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1 Extended Abstract

Sea ice concentration (SIC) refers to the percentage of sea ice in a
given ocean area. Accurate high-detail SIC maps in polar regions are
vital for a range of human activities (e.g., Arctic shipping) and the pre-
cise monitoring of polar sea ice changes [1]. However, the current
method of creating SIC maps through manual expert annotations on
synthetic aperture radar (SAR) imagery and other satellite data is both
imprecise in terms of spatial resolution and time-intensive to prepare
[2]. Although various convolutional neural network (CNN)-based tech-
niques have emerged for automating the process of generating sea
ice maps from SAR images, a major challenge lies in the absence of
finely-grained pixel-level labels for training these models. This lack of
detailed training data limits the ability of these methods to yield reli-
able high-resolution mapping outcomes.

To address this issue, this research generate predictions for pixel-
level SIC by training a model to learn from region-level SIC ground
truth data. Specifically, a novel regional loss function is developed
described in Algorithm 1, which allows direct integration of the re-
gional SIC values in ice charts to train a U-Net-based SIC estimation
model. The network architecture of the proposed pipeline, built upon
the U-Net framework [3], is illustrated in Fig. 1. This architecture is
composed of four encoder blocks and four decoder blocks. The num-
ber of filters utilized in each convolutional or deconvolutional layer is
represented by the corresponding digit beneath them in Fig. 1. To cal-
culate the likelihood of each pixel belonging to the ice class, a linear
layer followed by the sigmoid function is incorporated after the out-
puts of the final deconvolutional layer. This process also corresponds
to pixel-level SIC estimation.

In order to circumvent the potential inaccuracies stemming from
the translation of region-level SIC values to ground-truth pixel-level
SIC values, we adopt a novel regional loss function during model train-
ing, which can be regarded as weakly supervised learning approach
that empowers the CNN-based model to directly learn from the ground
truth SIC values at the polygon level. Specifically, during each itera-
tion of the training phase, the sigmoid function outputs for each input
patch are transformed into predictions for polygon-based SIC, as de-
picted on the right side of Fig. 1. The boundaries of these polygons
are determined based on the corresponding ground truth SIC at the
polygon level. The predicted SIC for a given polygon is computed by
summing the logits following the sigmoid function (which represents
pixel-based SIC estimates) and then dividing by the total number of
pixels within the polygon. Then, a polygon-based L2 loss function is
introduced. This loss function operates on each patch and quanti-
fies the squared error between the predicted polygon-based SIC and
the actual polygon-level ground truth SIC from ice charts. The loss
calculation is expressed as:

L2 =
1
N

N

∑
i=1

(Ĉi −Ci)
2, (1)

Here, N represents the number of polygons within the input patch,
Ĉi denotes the prediction for polygon-based SIC of the ith polygon,
and Ci signifies the actual SIC value at the ith polygon level in the ice
charts. This approach allows for learning from the polygon-level SIC
labels without requiring direct pixel-level labels, mitigating the poten-
tial inaccuracies associated with the traditional pixel-based approach.

The proposed method and the U-Net-based model is trained and
evaluated using the recently released AI4Arctic Sea Ice Challenge
Dataset, consisting of 533 Sentinel-1 SAR scenes and ancillary data
along with their corresponding ice charts. A comprehensive explana-
tion of the dataset can be found in the user manual [4]. The testing
results showcase the capability of the proposed model in generating
high-resolution SIC maps at the pixel level that align well with existing

Algorithm 1: Weak label loss
Data: output_logits, land_masks, polygon_icecharts,
polygon_codes_batch
Result: total_loss
total_loss = 0
batch_size = output.shape[0]
output_sigmoid = σ(out put_logits)
for img_id in range(batch_size) do

polygon_ids = np.unique(polygon_icecharts[img_id]);
for polygon_id in polygon_ids do

// create a mask of current polygon
poly_mask = polygon_icecharts[img_id] == poly_id
// create final mask by removing land

area from the poly_mask
final_mask = poly_mask ∩ land_masks[img_id]
// Get the Ground truth ct (total ice

concentration) for polygon_id using
Lookup table

ct = LUT(polygon_codes[img_id], polygon_id)
// AOI represents the area of interest
AOI = output_sigmoid[img_id][final_mask]
ĉt = AOI.sum()/AOI.numel()
loss = ∥ct − ĉt∥
total_loss +=loss

return total_loss

ice charts and visual interpretations with one example depicted in Fig.
2. Compared to the results obtained from a benchmark U-Net trained
with pixel-based ice chart labels and cross-entropy loss (Fig. 2(h)),
the proposed model improves the mapping resolution significantly, as
shown in Fig. 2(e).

In addition to visual interpretation, we also assess the model’s
performance quantitatively. Given the absence of actual pixel-based
labels for Sea Ice Concentration (SIC), we employ rasterized polygon-
based SIC maps for the purpose of comparison, as illustrated in Fig.
2(c). Similar to previous works [2], the accuracy of SIC estimation
is gauged using the R2 score, which measures how effectively the
SIC predictions approximate the corresponding SIC labels. Given the
significant visual dissimilarity between the polygon-based labels with
their coarse resolution and the pixel-level SIC predictions, an R2 score
below 0.85 (0.837 for validation scenes and 0.737 for testing scenes)
is in accordance with our expectations, as shown in Table 1. Nev-
ertheless, the agreement between polygon-based labels and predic-
tions (e.g., Fig. 2(g)) is evidenced by remarkably high R2 scores of
0.978 and 0.961 for the validation and testing scenes, respectively.

To sum up, our proposed approach not only yields pixel-level
SIC estimations but also generates pixel-level ice-water segmentation
maps and enhanced polygon-based SIC maps. All these outputs can
be transformed into valuable sea ice mapping products that greatly
enhance Arctic-related activities, including ship navigation, and con-
tribute significantly to climate-related research efforts.

Table 1: Numerical results obtained from validation and testing sets.

Comparison Validation set Testing set

RMSE R2

score RMSE R2

score
Pixel-level SIC estimates

VS Ground truth SIC 0.163 0.840 0.211 0.737

Polygon-level SIC estimates
VS Ground truth SIC 0.140 0.978 0.146 0.961



Fig. 1: The design of the suggested model for mapping SIC at the pixel level, which utilizes a U-Net architecture alongside the regional loss
function (represented by dashed lines).

Fig. 2: A Sentinel-1 SAR scene with the identifier 20180716T110418 cis from the testing dataset is depicted in both HH (a) and HV (b)
polarizations. Additionally, (c) illustrates the SIC map obtained from the ice chart, with each polygon indicated by a particular color (d). The
sigmoid output of the proposed model, serving as a representation of the pixel-based SIC map, is presented in (e). The outcome of ice-water
segmentation from (e) is shown in (f). (g) showcases the predicted polygon-based SIC map that combines (e) with the polygon boundary
details from (d). It is apparent that (g) correlates well with (c). (h) is the prediction from a benchmark U-Net for comparison with (e), which
demonstrates the significant improvement of spatial resolution using the proposed approach.
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