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Abstract

This study presents a novel approach to improve multi-object tracking
within the field of Ice Hockey Analytics. By harnessing depth estima-
tion, the goal is to tackle the common challenges related to tracking
multiple objects in a 3D scene that is projected onto a 2D screen. The
methodology encompasses acquiring video sequences, performing
depth estimation for all frames, and subsequently conducting multi-
object tracking on the resulting depth images. This study opens the
door to more initiatives to enhance multi-object tracking in the field of
hockey analytics.

1 Introduction

Generally, Ice Hockey analytics focus on puck-centric events such as
shots and goals[1]. However, puck-centric events are not sufficient
for understanding elements like global team strategy, which plays a
crucial role in long-term team success. Generating comprehensive
Ice Hockey analytics involves grasping simultaneous actions of play-
ers on the same team and how they contribute to a global strategy.
This, in turn, requires understanding individual player actions and the
evolution of their pose over time. Achieving this necessitates reliable
simultaneous identification and tracking of players over substantial pe-
riods.

This article investigates methods of enhancing the tracking ac-
curacies for the tracking of hockey players. It does so through the
following timeline: firstly, it discusses the current state of tracking in
ice hockey, with a focus on depth estimation and multi-object tracking.
Subsequently, the method section provides detailed information about
the workflow, the datasets used, and the data pre-processing meth-
ods. Finally, the results section will present qualitative and quantitative
findings, including a discussion of the evaluation metrics employed.

2 Background

2.1 Ice Hockey Analytics

Improving the tracking of players in Ice Hockey faces multiple obsta-
cles. Notably, the regular occlusions of players, the moving camera,
the speed of the players etc...

In pursuit of this goal, various approaches have been explored.
Vats et al. [2] introduced a transformer network designed for recogniz-
ing players through their jersey numbers in broadcast National Hockey
League (NHL) videos. This transformer takes temporal sequences of
player frames as input and outputs the probabilities of jersey numbers
present in the frames. The same author has adopted a more com-
prehensive approach by identifying both the team and the player’s
jersey in a separate article [3]. Furthermore, other researchers have
continued to focus on jersey recognition. In their work, Balaji et al. [4]
proposed a robust keyframe identification module that extracts frames
containing essential high-level information about the jersey number. A
spatio-temporal network is then employed to model spatial and tem-
poral context and predict the probabilities of jersey numbers in the
video.

However, for our present work, we do not perform identification;
we focus solely on tracking. The field of multi-object tracking is ex-
pansive, and the next subsection will delve into it further.

*https://botengu.github.io/portfolio/

2.2 Multi-object tracking

Multi-object tracking is the process of simultaneously detecting and
tracking multiple objects in an image or a video sequence, with diverse
applications, including surveillance, autonomous vehicles, robotics,
and more.

When tracking is conducted frame by frame with real-time ob-
servations, the process is referred to as online. On the other hand,
when tracking is performed on the entire sequence, considering all
frames, it is known as offline. Multi-Object Tracking involves two pri-
mary tasks: object detection can be initialized either through object
detection methods or manually initialized by manually labeling the
objects [5, 6]. Once objects are located and identified in individual
frames, tracking algorithms maintain the object identities across the
frames. For the scope of this project, we will focus on offline object
detection-based tracking methods.

Multi-Object Trackers (MOTs) can be implemented in multi-view
or single-view (monocular) settings. Single-view analysis, such as
broadcast views in hockey, is the most common as it requires less
setup, but it also poses significant challenges for MOTs, including oc-
clusions, scale variations, object interactions, appearance changes,
and cluttered scenes. Addressing these challenges is a major focus
in the literature.

Common approaches for tracking algorithms include more con-
ventional methods like the Kalman filter, the particle filter, and the
Hungarian algorithm. However, recent advances in deep learning
have significantly enhanced the accuracy of Multi-Object Trackers
(MOTs). Popular tracking/detection algorithms include the YOLO (You
Only Look Once) trackers [7]. The YOLO trackers are based on
the ’unified’ concept, enabling the simultaneous prediction of multi-
ple bounding boxes and class probabilities, thereby improving both
speed and accuracy. This technique redefines object detection as a
regression challenge, mapping it to spatially distinct bounding boxes
and corresponding class probabilities. The advantage lies in optimiz-
ing the entire detection pipeline as a single network, enabling end-to-
end optimization for enhanced detection performance. YOLO-v8 [8]
represents the latest version of this algorithm.

More recently, the introduction of the transformer model [9] has led
to the development of transformer MOTs [10–12], further contributing
to accuracy improvement.

However, despite these advancements, the accuracies, as mea-
sured using the multi-object tracking accuracy (MOTA) benchmark
[13], still stagnate between 70% and 80%. One of the leading im-
pediments to good accuracies in tracking models is the occurrence
of ID switches. For every tracked object, an ID is assigned, and ob-
jects follow specific paths through the frames, known as tracklets. ID
switches happen during mismatches between objects and tracklets.

Since trackers are predominantly used on 2D, unprocessed im-
ages, leveraging elements in images such as depth estimation could
provide trackers with additional information about the third dimension,
potentially enhancing final accuracies.

Several studies have demonstrated the benefits of employing new
representations to enhance multi-object tracking [14–16]. Liu et al.
[15] developed a depth cascading method that calculates the mini-
mum and maximum pseudo-depth values for both detection and tra-
jectory sets in a given RGB image. The algorithm transforms depths
into sparse target subsets and conducts data association by prioritiz-
ing objects from near to far, dividing the interval between them into
depth intervals. It associates trajectories and detections at the same
depth level using Intersection over Union association. The promising
results shown by Liu et al. [15] underscore the potential of utilizing
depth estimation techniques. Sparsetrack has performed admirably;
however, the nature of the data used (MOT) differs qualitatively from
ours, making it not necessarily generalizable. In other words, the



Sparsetrack algorithm works with images where the depth images
have not been added with RGB images.

To allow for more flexibility, we have chosen to perform track-
ing and depth estimation separately. Additionally, breaking down the
workflow affords us greater control over parameters such as the type
of depth estimation, tracking method, and concatenation approach for
the final output.

2.3 Depth estimation

Depth estimation is crucial in computer vision and 3D scene un-
derstanding, finding applications in robotics, augmented reality, au-
tonomous vehicles, and more. It involves methods to infer the depth or
distance of objects in a scene from 2D images or image sequences.
Depth information can be acquired using depth sensors and stereo
vision, but for monocular depth estimation (MDE), the focus is on es-
timating depth from monocular views which is what we will use in our
scenario since we are dealing with broadcast views. Recently, trans-
formers have proven useful for MDE [17]. Additionally, depth estima-
tion can benefit from cross-modal information, such as incorporating
semantic details from RGB images, enhancing the accuracy of depth
prediction.

Diffusion models have been used for depth estimation. They op-
erate by destroying training data through the successive addition of
Gaussian noise and then learning to recover the data by reversing
this noising process. Ke et al. [18] have opted for latent diffusion
models to perform MDE. They have used a frozen variational autoen-
coder to put both the image and its depth map into a hidden space
for training their denoiser that works conditionally. For most papers,
their understanding of the world relies on training data. However, with
stable diffusion, understanding can be drawn from priors.

3 Methods

(a) Workflow to obtain depth images

(b) Workflow to obtain combined images

Fig. 1: Workflow

Our approach is two-fold. Firstly, we generate depth maps for se-
lected images in our dataset using the method proposed by [18]. In-
stead of considering the monochromatic colormap, we have opted for
a spectral one. Performing piecewise addition with spectral colormaps
has a more pronounced effect, resulting in an image different enough
to impact the tracking stage. Subsequently, the generated depth im-
ages are utilized to reconstruct a video, which is then input into the
YOLO-v8 model. The model outputs the location and properties of
the final bounding boxes and corresponding IDs for all the frames.

3.1 Datasets

The ice hockey sequences were obtained from the McGill Hockey
Player Tracking Dataset (MHPTD) [19]. The dataset follows a for-
mat similar to the popular MOT challenge dataset used for pedestrian
tracking. Each entry in the dataset represents an instance of a hockey

player. The key distinction lies in the assignment of identity: MHPTD
assigns identity at a personal level, while the MOT challenge assigns
identity at a tracklet level. In MHPTD, the same identity is assigned to
a person who exits and re-enters the field of view, resulting in multiple
tracklets sharing the same identity.

The dataset comprises 25 high-definition NHL (National Hockey
League) gameplay video clips, each capturing one shot of the game-
play from an overhead camera position. A "shot" is defined as a series
of frames that run without interruption, without cut or camera switch.
To accommodate different NHL broadcast video frame rates (60 fps
and 30 fps), half of the video clips have a frame rate of 30 fps, and the
other half have a frame rate of 60 fps. The annotation of the videos
was performed using the Computer Vision Annotation Tool (CVAT), an
open-source video annotation tool [20].

3.2 Data representation

The various video clips belong to different competitions. For this ex-
periment, we have selected the initial 10 seconds (300 frames - 30
fps) of the first (001) clip from the All-Star competition. The corre-
sponding depth images for these frames were captured and utilized
to create three datasets with distinct data representations (refer to
Figures 1 and 2).

• The first dataset taken was the original(referred to as regular)
broadcast frames.

• The second type of data was the depth images.
• The third dataset was obtained by superposing both the

weighted depth images onto their corresponding weighted orig-
inal frames. The respective weights were 0.7 and 0.3. The su-
perposition was done using piecewise addition instead of con-
catenation. This is because the tracker was not adapted for
4-layer "RGBD" images.

4 Results

During the post-process operation, bounding boxes were extracted
from the ground truth labels for the McGill Hockey dataset as well as
for the YOLO algorithm. The existing ground truth labels provided
by the McGill Hockey dataset were utilized. The ground truth labels
were reformatted into a dictionary data structure format, where the
keys of the dictionary corresponded to the frame number. For each
frame, there were two lists: the first list contained the object IDs, and
the second list contained sublists which each contained three items,
representing the bottom left point coordinates, width, and height of
each bounding box. The order of the IDs in the first list corresponded
to the order of the sublists containing the bounding box information in
the second list. The predicted bounding boxes for the different data
representations followed the same structure.

4.1 Qualitative results

Figure 3 shows the superposition of the predicted tracked bound-
ing boxes for the various data representations as well as the ground
truths. All these bounding boxes are displayed on top of the original
first frame. Despite it only being the first frame, the results suggest
a low bounding box count for the depth images, where the only de-
tected people are outside of the rink. The bounding boxes for the
combined and regular experiments appear to detect most people on
the rink correctly and align well with the ground truth labels.

4.2 Quantitative results

4.2.1 Dice score

The dice score is a metric used to quantify the similarity between two
sets, commonly employed in the evaluation of segmentation tasks,
particularly in the field of medical image analysis and computer vision
[21].

The Dice score is defined as:

Dice = 2 · |P∩G|
|P|+ |G|



(a) First frame of original footage

(b) Equivalent depth map for original frame

(c) Combined original frame and depth map

Fig. 2: Data representations

The numerator represents the number of elements that are com-
mon to both sets (P and G), while the denominator refers to the sum
of the elements in the sets. In the context of image segmentation,
these sets typically correspond to the pixels in the predicted segmen-
tation mask and the ground truth segmentation mask. The Dice score
ranges from 0 to 1, where 0 indicates no overlap between the sets (no
agreement between the predicted and ground truth segmentation),
and 1 indicates perfect overlap.

Initially, we performed box matching and compared each dataset
with the ground truths. For each key in the dictionary, we identified
the boxes with the most overlap with the ground truths, and then we
calculated the mean Dice score for the frame. The Dice score coef-
ficient reflects the overlap between the matched boxes. For display
purposes, we have grouped the scores across multiple frames.

Figure 4 shows that while the regular and combined representa-
tions have similar scores (with the Dice score of the combined repre-
sentation being slightly smaller). The Dice score for the depth images
on the other hand is considerably smaller.

(a) Ground truths’ bounding boxes and predicted bound-
ing boxes for the regular frames

(b) Ground truths’ bounding boxes and predicted bound-
ing boxes for the depth images

(c) Ground truths’ bounding boxes and predicted bound-
ing boxes for the combined images

Fig. 3: Qualitative results

4.2.2 ID switches

To detect ID switches in the different tracked footage, we have de-
veloped a specific procedure. Initially, we create an ID-tracking table
where each entry contains bounding box information. The row num-
ber corresponds to the ID of the tracked object, and the column corre-
sponds to the frame number for which the object is tracked (see Figure
5). Each row in this table represents the evolution of the bounding box
properties (size and coordinates) over time.

To estimate the number of ID switches for a particular prediction,
we create two ID-tracking tables: one for the ground truths and one for
the predicted case using a specific data representation. Let’s denote
the ID-tracking tables of the ground truth and the specific data repre-
sentation as Tgt and Td−rep, respectively. We create an empty table,
Tresults, which has the same dimensions as Tgt .

Entry i j refers to the bounding box properties for an object with ID
i at frame j. For every frame j in Tgt , the bounding box of object i is
compared to all the bounding boxes present in that frame for Td−rep
(the entire column associated with a particular frame). We search for
the bounding box in the table Td−rep that overlaps the most with the
bounding box of object i in Tgt . We record the ID of that bounding box
and place it in entry i j in Tresults, as shown in Figure 5

To avoid any ID switches, every entry in a row of Tresults should
have the same entry number corresponding to the specific ID from ta-
ble Td−rep. The number of changes reflects the amount of ID switches.
The number of ID switches for every object from the original ground
truths is added to give the total ID switches.

The results are shown in Table 1:
The depth representation method shows fewer ID switches than



Fig. 4: Mean dice score for different frame intervals

Fig. 5: Example of tables required for the ID-switch method. The
top left one stores the boxes info for the ground truths (Tgt ), the bot-
tom left stores info related to the predicted boxes for the specific data
representation(Td−rep). The right one, Tresults, tracks the ID switches.

Regular Depth Combined
ID Switches 183 155 390

Table 1: Table showing ID switches

the other method, but that is also because there are fewer boxes,
as can be seen in the original Figure 3. However, the regular data
representation performs better than the combined one. This indicates
that the addition of the depth map may have negatively impacted the
tracker’s performance.

5 Conclusion and future work

The experiments have indicated that depth maps, or at least the cur-
rent method of integration, are not sufficient to improve tracking. De-
spite the interesting initiative, further validation is required to establish
depth maps as viable solutions. The depth map has the potential to
be extremely informative and could aid in preventing occlusions for ice
hockey analytics. Additional research is needed on how to appropri-
ately integrate the depth map with the original image before feeding it
into the multi-object tracking system (i.e. exploring 4-channel RGBD
data representation). Furthermore, we are also planning to combine
regular frames and depth maps within the latent space [22] to further
enhance the tracking process.
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