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Abstract
Parkinson’s disease (PD) is a progressive neurode-
generative disorder that can be clinically diagnosed
through various neuroimaging techniques. Single-
photon emission computed tomography (SPECT)
has proven to be an effective tool for the early detec-
tion of PD. Automatic detection of PD from SPECT
images, using machine learning or deep learning
models is crucial for providing faster, more accu-
rate diagnoses, and facilitating early intervention.
While large datasets of SPECT scans for PD are
available, they are often highly imbalanced, which
can significantly hinder the performance of deep
learning models. In this paper, we explore how syn-
thetic image generation can address the dataset im-
balance problem and improve the accuracy of deep
learning models. We evaluated the performance
of several state-of-the-art pre-trained deep learn-
ing models, including Vision Transformer (ViT),
VGG-16, EfficientNet, and a newly proposed hy-
brid model, Inception-VGG16. Experimental re-
sults demonstrate that augmenting the dataset with
synthetic images significantly improves the perfor-
mance of all models, with ViT achieving the high-
est test accuracy of 98%. The proposed Inception-
VGG16 model performed second best, achieving a
test accuracy of 95%. These results suggest that syn-
thetic augmentation can enhance the performance
of pre-trained models in detecting Parkinson’s dis-
ease, presenting a promising approach for enhanc-
ing automatic diagnostic tools. The implementation
of this work is available at this GitHub Repository.

∗Corresponding Author

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegen-
erative disorder caused by the loss of the dopamin-
ergic neurons in the substantia nigra region in the
midbrain [1]. The symptoms include tremors, stiff-
ness, bradykinesia (slowness of movement), and hypoki-
nesia (reduced movement), postural instability, falls,
orthostatic hypotension, and dementia [2]. Parkin-
son’s disease can be detected using neuroimaging tech-
niques such as Magnetic Resonance Imaging (MRI), Sin-
gle Photon Emission Computed Tomography (SPECT),
Positron Emission Tomography (PET), Computed To-
mography (CT), etc [3]. However, SPECT can detect
PD at an early stage and can be used in the differential
diagnosis between PD and non-degenerative forms of
Parkinson’s [4]. Computer-aided diagnosis can enhance
Parkinson’s disease detection through advanced image
analysis and machine learning, providing earlier, more
accurate diagnosis. Several works have been done on
computer-aided detection of Parkinson’s disease from
brain scans using traditional machine learning models
such as Support Vector Machine, Regression, and Deci-
sion tree, as well as deep learning models such as Neural
networks showing promising results [5, 6]. This work
evaluates the performance of some of the state-of-the-
art pre-trained deep learning models in diagnosing PD.
However, an imbalanced dataset can adversely affect the
performance of the diagnostic models. There are vari-
ous kinds of data augmentation techniques such as over-
sampling, undersampling, flipping, rotating, etc, but us-
ing generative models to produce synthetic images has
shown promising results in augmenting datasets [7].
This research investigates how using synthetic images
can improve the performance of diagnostic models. The
objective of this research is stated as follows:

• To balance an imbalanced dataset by generating
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Figure 1: Overview of the proposed methodology

synthetic SPECT images and demonstrate the im-
pact of the generated images on the performance
of the classification models.

• Leverage transfer learning to classify SPECT im-
ages for PD detection using various pre-trained
models and comprehensively evaluate the perfor-
mance of the models.

• To propose a new model- Inception-VGG16 which
provides a higher accuracy compared to using
VGG-16 alone.

2 Methodology

As shown in Figure 1, the workflow outlines key steps
for diagnosing Parkinson’s disease using pre-trained
deep learning models with synthetic image genera-
tion. The process starts with image acquisition from the
database, followed by pre-processing to enhance the im-
age quality. A Generative Adversarial Network (GAN)
generates synthetic images to balance the dataset. The
preprocessed and augmented data is then used formodel
performance comparison. Finally, saliency mapping ex-
plains the models’ decisions by identifying key regions
in the images. Each step is briefly detailed in the follow-
ing subsections.

2.1 Data Acquisition and Preprocessing
The dataset has been collected from the Parkinson’s Pro-
gression Marker’s Initiative (PPMI) database. A total of
1442 SPECT images were collected, of which 1,157 be-
long to the PD class, and 285 belong to the healthy con-
trol or non-PD class. Scans were taken between the 12th
month and 156th month of the disease progression, and
the volunteers aged in the range of 35 to 50 years.
The reconstructed SPECT images collected from PPMI

are 3D images in the DICOM format. For standardiza-
tion and convenience, the 3D images are converted to
2D in the PNG format. From the 96 slices, the 42nd slice

was chosen for all images as the Region of Interest (ROI)
is most visible in this slice. To further pre-process the
images, Horizontal and vertical flips were performed to
induce variability in the data. The images were blurred
using Gaussian blur to reduce noise and resized to stan-
dardize the size of the images, preparing them as train-
ing models.

2.2 Synthetic Image Generation

The dataset collected from PPMI was highly imbalanced,
with 1,157 images of PD cases and 285 non-PD im-
ages. This imbalance can hinder the performance of
deep learning models. To address this issue, StyleGAN3,
a Generative Adversarial Network (GAN) developed by
NVIDIA [8], was employed to generate approximately
700 synthetic images for the non-PD class. These syn-
thetic images were visually similar to the original non-
PD images, at least confirmed by 1D histograms show-
ing comparable distributions. Some abnormal images
were detected and removed using the Alibi Detect out-
lier detection model [9]. To prevent the ratio of original
to synthetic images from being too large, the PD class
was undersampled from 1,157 to 996 images. Balancing
the dataset at exactly 960 images for both classes would
have resulted in a higher proportion of synthetic images
in the non-PD class compared to the PD class. This im-
balance could introduce biases in the model, as it might
learn features that are more reflective of the synthetic
data rather than the true characteristics of the original
data. The choice of 996 samples of PD class preserved
a closer balance between original and synthetic images.
Ultimately, the dataset was balanced, consisting of 996
PD cases and 960 non-PD cases, allowing for improved
model performance.

2.3 Model Overview

In this research, four models are utilized for analysis,
comprising three existing pre-trained models—Vision
Transformer (ViT) [10], VGG-16 [11], and Efficient-
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Figure 2: Inception-VGG16 architecture

Net [12] and a proposed novel model, named Inception-
VGG16. Each model offers unique characteristics and
strengths, which are briefly described below:

• Vision Transformer (ViT) is a model that applies
the transformer architecture. Instead of scanning
the whole image at once, ViT partitions the image
into small, equal-sized pieces and then examines
each piece through the transformer layers. Pre-
trained on a large dataset, ViT has shown promis-
ing results in image classification tasks.

• EfficientNet is a convolutional neural network
(CNN) architecture that optimizes both accuracy
and computational efficiency. Introduced by
Google researchers, it systematically scales the di-
mensions of depth, width, and image resolution
through a compound scaling method. This bal-
anced scaling results in higher performance lev-
els with reduced computational need, making Ef-
ficientNet a powerful model for a wide range of
image-processing tasks

• VGG-16 is another CNN model with a deep archi-
tecture consisting of 16 layers, including 13 con-
volutional layers followed by 3 fully connected
layers. It employs small (3x3) convolution filters
throughout images, allowing it to capture fine de-
tails from images effectively. Despite its straight-
forward structure, VGG-16 has achieved remark-
able success in image recognition tasks and is
widely used as a feature extractor in various com-
puter vision applications.

• Inception-VGG16, proposed in this work, is a
hybrid model combining VGG16 and Inception
V3 [13]. The Inception layer applies multiple con-
volutional filters (1x1, 3x3, 5x5) and max-pooling
in parallel to capture features at different scales.
In this model, outputs from the final pooling layer
of VGG16 are fed into an Inception layer with five
Conv2D layers (2x512, 2x128, 1x64), followed by
dense layers for classification. This structure en-
hances the model’s ability to recognize diverse ob-
jects and shapes. The architecture of the model is
shown in Figure 2.

Figure 3: Saliency mapping of Inception-VGG16 model

3 Experimentation and Results

In the experiment, the models were trained and evalu-
ated on both the imbalanced dataset (1,157 PD, 285 non-
PD) and the augmented dataset (996 PD, 960 non-PD).
The data was split into training (70%), validation (20%),
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Table 1: Model’s Performance Evaluation with Precision and Recall

Model Accuracy
without Generated Images

Precision
without Generated Images

Recall
without Generated Images

Accuracy
with Generated Images

Precision
with Generated Images

Recall
with Generated Images

Vision Transformer 77% 61% 78% 98% 99% 97%
EfficientNet 77% 60% 77% 90% 90% 89%
VGG-16 76% 59% 76% 87% 89% 87%
Inception VGG16 77% 60% 77% 96% 97% 96%

and testing (10%) sets to ensure a balanced performance
assessment.
For Vision Transformer (ViT), the DeiT Tiny model

[14] was chosen for its computational efficiency, with
pre-trained weights fine-tuned using the dataset. VGG-
16 and EfficientNet-B7 models were also fine-tuned us-
ing pre-trained weights from ImageNet. EfficientNet’s
classification layer was also replaced by a Sigmoid Lin-
ear Unit (SiLU) activation function [15] for better perfor-
mance. The proposed Inception-VGG16 model, a hybrid
of VGG-16 and InceptionV3, incorporated an Inception
layer to enhance feature extraction. Adam and AdamW
optimizers with a learning rate of 0.001 were used for
training. Results demonstrate significant improvement
with the augmented dataset, with ViT achieving the
highest test accuracy of 98%, followed by Inception-
VGG16 at 95%. Table 1 shows a comprehensive eval-
uation of the performance of the models on both bal-
anced and imbalanced datasets. Additionally, Saliency
maps [16] were also created by computing the gradients
of the model’s output with respect to the input image.
These gradients highlight which pixels in the image are
most influential in the model’s prediction. In Figure 3,
the image on the left represents the original image, while
the right image is the corresponding saliencymap show-
ing how the model interprets regions of interest. The
heatmap can help validate the model by ensuring it fo-
cuses on medically relevant areas in the images.

Discussion

The results highlight the effectiveness of balancing
datasets and the comparative performance of differ-
ent models. When trained on imbalanced datasets, all
models, including ViT, EfficientNet, VGG16, and the
proposed Inception-VGG16, struggled with poor per-
formance for the minority class (non-pd class), as re-
flected in low precision, recall, and accuracy. How-
ever, training on a balanced dataset significantly im-
proved the performance of all the models. While ViT
achieved the highest accuracy on the balanced dataset
(98%), the proposed Inception-VGG16 model achieved
the second-best result with an overall accuracy of 97%
with a weighted precision of 97% and a weighted re-
call of 96%. The proposed Inception-VGG16 model of-
fers better interpretability than ViT due to its convolu-

tional architecture, which captures localized, pixel-level
features and enables clear visualization of regions influ-
encing predictions. This is crucial for identifying subtle
patterns in sensitive applications like medical imaging.
In contrast, ViT’s global self-attention mechanisms can
make its decision-making process less transparent and
harder to interpret for high-stakes use cases. In addition,
ViT’s transformer-based architecture, though highly ac-
curate, is computationally intensive and requires sub-
stantial resources, making it less practical for resource-
constrained environments.

Limitations
This study has limitations due to the conversion of 3D
SPECT images into 2D by manually selecting the 42nd
slice. While this simplifies computational requirements,
it may not always capture themost diagnostic slice. Crit-
ical patterns or features might be more visible in other
slices, and relying solely on a single slice introduces sub-
jectivity and risks omitting key information necessary
for accurate classification.
Another significant concern is potential data leakage.

If multiple samples from the same patient are included
in the training, validation, and test sets, the model may
learn patient-specific features rather than generalizable
patterns. This could lead to inflated performance met-
rics and misrepresent the model’s real-world applicabil-
ity. Patient-level data splitting is essential to ensure un-
biased evaluation.
Moreover, the model was only tested on SPECT

images, limiting its generalizability to other imaging
modalities such as MRI, CT, or PET scans. Each modal-
ity presents unique challenges, and performance in one
does not guarantee similar results in others. Expanding
the study to includemultimodal datasets or using 3D im-
age data could provide more robust and comprehensive
insights into the model’s applicability across clinical set-
tings.

4 Conclusion
This work demonstrates that augmenting the dataset
with synthetic images can significantly enhance the
performance of pre-trained models. Among the mod-
els evaluated, Vision Transformer (ViT) outperformed
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the other models in classifying SPECT images to detect
Parkinson’s disease. The proposed Inception-VGG16
model, while not surpassing ViT, showed promising re-
sults, achieving the second-highest accuracy compared
to VGG16 and EfficientNet. Additionally, saliency map-
ping could provide valuable insights by explaining the
model’s decision-making process. Future work would
involve testing it on larger and more diverse datasets to
further validate the robustness and reliability of the pro-
posed Inception-VGG16 model.
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