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Abstract
Self-supervised learning (SSL) methods like VICReg
have shown considerable success in generating ro-
bust data representation by promoting invariance
across augmented views. However, VICReg’s focus
on pairwise alignment between augmentations lim-
its its capacity to ensure broader consistency across
entire batches of diverse transformations. In this
paper, we enhance VICReg by integrating a Maxi-
mum Mean Discrepancy (MMD) term, which aligns
feature distributions across the entire batch in a
Reproducing Kernel Hilbert Space (RKHS), thereby
promoting batch-level invariance. By enforcing a
unified feature distribution across a batch, MMD
enables the model to capture higher-order depen-
dencies and reduce variability among augmented
views. We have evaluated our approach on MNIST,
CIFAR-10, and STL-10, where the results demon-
strate improved representation quality, as evidenced
by clustering accuracy and linear classification per-
formance. The results highlight the effectiveness of
incorporating MMD term into VICReg in enhancing
the representation quality.

1 Introduction

Self-supervised learning (SSL) [1, 2, 3] has emerged as
a powerful framework for learning data representations
without labeled supervision. VICReg [4, 5, 6] has ad-
vanced SSL by minimizing three key objectives: invari-
ance, variance, and covariance regularization. Specif-
ically, VICReg’s invariance objective aims to produce
consistent representations for different augmentations
of the same input. This ensures that representations
are stable to changes in data views [4]. However, while
pairwise invariance promotes consistency between aug-

mented pairs [7], capturing broader batch-level con-
sistency remains a challenge, especially for complex
datasets where robust invariance is essential. Batch-
level consistency is crucial because it ensures the model
generalizes effectively across a wide range of augmen-
tations, producing a more robust feature space [8].

To address this limitation, we propose enhancing
VICReg by incorporating a Maximum Mean Discrep-
ancy (MMD) term [9]. MMD is a kernel-based distri-
bution alignment technique that enforces consistency
across the entire batch of augmented features by align-
ing distributions in a Reproducing Kernel Hilbert Space
(RKHS) [9, 10, 11]. Unlike pairwise objectives, MMD
captures both linear and non-linear dependencies across
the batch, promoting smoother and more stable feature
distributions. Our experiments on MNIST, CIFAR-10,
and STL-10 demonstrate that integrating MMD into VI-
CReg improves representation quality, as shown by clus-
tering accuracy and linear classification performance.

2 Background and Related Work

2.1 Invariance in Self-Supervised Learn-
ing and VICReg

Self-supervised learning frameworks like SimCLR [12],
BYOL [13], and VICReg [4] have achieved significant
progress by training models to produce consistent repre-
sentations across augmentations of the same input. VI-
CReg minimizes three objectives:

LVICReg = λLinv + µLvar + ν Lcov, (1)

where λ, µ, and ν are hyperparameters. The model
uses a backbone-projector architecture [12, 14], a con-
figuration frequently used in SSL frameworks [4, 14], to
transform input samples into feature vectors through an
encoder, followed by an expander network. The goal
of invariance (to data augmentation) in VICReg is to
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produce similar representations for different augmen-
tations. However, this pairwise approach (comparison
of representations between pairs of augmented views
of the same sample) may not fully address variability
across an entire batch of augmentations, limiting the
model’s robustness and generalization.

2.2 MaximumMean Discrepancy (MMD)
for Enhanced Invariance

Maximum Mean Discrepancy (MMD) [9] measures the
distance between two probability distributions in an
RKHS. It is defined as

MMD(P,Q) = ∥EP [ϕ(z1)]− EQ[ϕ(z2)]∥2H, (2)

where P and Q are distributions over representations
z1 and z2, and ϕ is a mapping to RKHS using a positive-
definite kernel function. By aligning distributions across
the batch, MMD captures both linear and non-linear de-
pendencies [9], promoting a more robust and stable fea-
ture space.

2.3 Contributions ofMMD to VICReg for
Manifold-Aware Invariance

Integrating MMD into VICReg extends invariance from
pairwise alignment to batch-level consistency. This en-
ables VICReg to capture a broader range of dependencies
and align features across diverse transformations within
the batch. MMD’s ability to enforce a unified feature dis-
tribution enhances robustness, making representations
more stable and aligned with the data manifold. This
approach addresses limitations of pairwise invariance,
reinforcing the model’s generalizability [15].

3 Methodology
Our proposed approach integrates Maximum Mean Dis-
crepancy (MMD) into VICReg’s to address the limita-
tions of pairwise invariance by enforcing consistency
across all samples in a batch. This section details the
formulation of our objective function and the theoretical
motivation behind using MMD to strengthen invariance
in VICReg.

3.1 Objective: VICReg with MMD-
Enhanced Invariance

VICReg aims to produce invariant features by minimiz-
ing the distance between representations of paired aug-
mentations of the same input. However, this pairwise
approach may be limited in capturing broader batch-
level dependencies [16] and does not fully account for
consistency across different transformations within a

batch. MMD addresses this by aligning feature distri-
butions across all augmented views in the batch.

To achieve this, we incorporate an MMD term into VI-
CReg’s loss, forming an objective function that balances
both pairwise and batch-level alignment:

L = λLinv + µLvar + ν Lcov + αLMMD, (3)

where Linv denotes the original pairwise invariance in
VICReg, and LMMD is the MMD term that aligns feature
distributions across the batch, defined in 2. The param-
eter α controls the influence of MMD relative to other
terms, balancing pairwise invariance with batch-level
alignment.

3.2 Theoretical Motivation for MMD-
Enhanced Invariance in VICReg

The addition of MMD to VICReg’s objective function of-
fers several theoretical benefits:

Batch-Level Invariance Unlike pairwise objectives
that enforce invariance only between specific views,
MMD aligns all augmented samples in the batch. This
caused a unified feature space where diverse transfor-
mations are consistently mapped. This batch-level con-
sistency smooths variations among representations and
contributes to a more robust, transformation-invariant
representation [9].

Improved Generalization and Domain Adaptation
By aligning feature distributions in a batch of different
augmentations, MMD promotes a representation that
is less susceptible to overfitting on individual transfor-
mations. This supports better generalization for un-
seen transformations [17]. Additionally, MMD has been
shown to improve domain adaptability by aligning fea-
ture distributions in a manner that is stable across do-
mains. It makes the learned representations more trans-
ferable across data settings [18].

Manifold Alignment andHigher-Order Dependen-
cies MMD’s alignment in RKHS allows the model to
capture both linear and non-linear dependencies across
the batch, supporting a manifold-aware alignment of
features that respects the intrinsic geometry of the data
space. This is especially beneficial for complex, non-
linear datasets, where capturing higher-order depen-
dencies aids in representing the underlying structure of
the data [9].
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3.3 Parameter Selection and Kernel
Choice

The effectiveness of MMD is sensitive to the choice of
kernel. In our experiments, we employ a Gaussian ker-
nel:

k(x, y) = exp

(
−∥x− y∥2

2σ2

)
, (4)

where σ controls the scale of the kernel, affecting the de-
gree to which local versus global dependencies are cap-
tured. Choosing an appropriate σ is critical for the ef-
fectiveness of MMD. A smaller σ emphasizes local de-
pendencies, making MMD sensitive to small-scale vari-
ations. A larger σ captures global dependencies and
smooths out finer details. To balance these effects, we
selected σ empirically testing a range of values. Af-
ter experimentation, we selected σ = 1 as it provided
the best results on the validation set, demonstrating a
balanced contribution of MMD to batch-level alignment
while maintaining the effectiveness of VICReg’s original
objectives.

Combined Impact The combined VICReg-MMD ob-
jective leverages both pairwise and batch-level align-
ment. By enhancing batch-level invariance through
MMD, our method achieves representations that are ro-
bust to diverse transformations and resilient to domain
variations. This dual approach provides a balanced regu-
larization strategy, yielding high-quality self-supervised
representations suited for downstream tasks.

4 Experiments

To assess the effectiveness of our proposed VICReg with
MMD-enhanced invariance, we conduct experiments on
MNIST, CIFAR-10, and STL-10 datasets. These datasets
vary in complexity, providing a robust evaluation of our
method’s ability to capture invariance across simple and
complex data distributions. We measure the quality of
the learned representations by evaluating their perfor-
mance on linear classification, and clustering accuracy.
For evaluating the learned representations, we used a
Multi-Layer Perceptron (MLP) classifier with two fully
connected layers. The first layer maps the input di-
mension to 256 features, followed by a ReLU activa-
tion, and the second layer maps to 10 classes. For clus-
tering, we used the k-Nearest Neighbors (k-NN) algo-
rithm [19].Our experiments are designed to highlight
how batch-level alignment with MMD improves repre-
sentation consistency and robustness compared to base-
line VICReg.

4.1 Experimental Setup
We implemented a lightweight version of the VICReg ar-
chitecture, using a three-layer convolutional network as
the backbone. Each image in these datasets is processed
through standard data augmentations, including ran-
dom cropping, flipping, and color jittering. These aug-
mentations introduce variations that our model learns
to be invariant to, with MMD contributing to the align-
ment of the feature distributions across all augmented
samples in the batch.

Dataset VICReg VICReg + MMD

Classifier Clustering Classifier Clustering

MNIST 88.67% 81.65% 91.68% 88.26%
CIFAR-10 59.73% 48.96% 61.96% 50.36%
STL-10 53.78% 40.66% 60.22% 42.26%

Table 1: Performance comparison of VICReg and VI-
CReg + MMD on MNIST, CIFAR-10, and STL-10, eval-
uated by linear classifier and clustering accuracy.

4.2 Results and Analysis
The results in Table 1 indicate that incorporating MMD
into VICReg consistently improves representation qual-
ity across all datasets. The most significant improve-
ments are observed on the STL-10 dataset, which con-
tains high-dimensional and complex images, where
MMD-enhanced VICReg achieves a classifier accuracy
increase from 53.78% to 60.22% and a clustering accu-
racy increase from 40.66% to 42.26%. This improvement
suggests that MMD’s batch-level alignment is especially
effective in scenarios where invariance across complex
transformations is critical.

Batch-Level Consistency Integrating MMD into VI-
CReg enhances clustering performance, as demon-
strated by improved metrics on complex datasets like
CIFAR-10 and STL-10. This aligns with prior work
highlighting the effectiveness of batch-level distribu-
tion alignment in capturing richer feature representa-
tions [9]. By enforcing consistency across the entire
batch in a Reproducing Kernel Hilbert Space (RKHS),
MMD reduces variability among augmentations, which
is theoretically supported to promote more cohesive
clustering [10]. While the observed increase in cluster-
ing accuracy provides empirical evidence of this benefit,
further exploration is needed to fully characterize the
relationship between batch-level alignment and feature
space stability in diverse self-supervised settings.

Improved Robustness and Generalization The
benefits of MMD’s batch-level alignment are evident in
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the linear classification results. By ensuring that aug-
mented samples across the batch map to a cohesive fea-
ture distribution, MMD reduces variability, which en-
hances feature robustness and generalizability across
transformations. This improvement is consistent across
datasets, highlighting the advantage of enforcing batch-
level invariance in a variety of data contexts.

4.3 t-SNE Visualization
To illustrate the impact of MMD on representation struc-
ture, we visualize the learned features using t-SNE on
the MNIST dataset. As shown in Figure 1, represen-
tations learned by VICReg + MMD exhibit more dis-
tinct clusters with less overlap between classes com-
pared to the baseline VICReg. This improvement in clus-
ter separability suggests that MMD’s batch-level align-
ment supports a more organized feature space, making
the learned representations more interpretable and eas-
ier to classify.

4.4 Ablation Study on MMD Influence
We further conducted an ablation study to analyze the
effect of the MMD term’s weight (α) on representation
quality. Figure 2 shows that as α increased, cluster-
ing accuracy improved up to a certain threshold, be-
yond which performance plateaued. This suggests that
MMD’s influence is most effective when balanced with
other VICReg objectives, reinforcing that batch-level
alignment enhances invariance without overwhelming
pairwise alignment.

4.5 Summary of Findings
Our experimental results validate the hypothesis that in-
corporating MMD into VICReg enhances representation
quality by strengthening batch-level invariance. MMD’s
ability to align feature distributions across the batch
yields representations that are not only more invariant
but also better suited for downstream tasks, particularly
in complex data contexts. These results highlight the
importance of batch-level consistency in self-supervised
learning, demonstrating MMD’s role as a valuable addi-
tion to VICReg for manifold-aware, robust representa-
tion learning.

5 Conclusion
We introduced an enhancement to VICReg by incorpo-
rating a Maximum Mean Discrepancy (MMD) term to
address the limitations of pairwise invariance in self-
supervised representation learning. By aligning feature
distributions across the batch in a Reproducing Kernel
Hilbert Space (RKHS), MMD promotes batch-level con-

(a) VICReg + MMD

(b) VICReg

Figure 1: t-SNE visualization of representations on
MNIST: (a) VICReg + MMD, (b) VICReg. The addition
of MMD leads to more distinct, well-separated clusters.

sistency, resulting in a unified and stable feature space.
Our experiments on MNIST, CIFAR-10, and STL-10

show that MMD improves representation quality, as ev-
idenced by higher linear classification accuracy and en-
hanced clustering performance. These results under-
score the benefits of capturing higher-order dependen-
cies and suggest that batch-level alignment contributes
to more robust and generalizable features.

Future work could explore MMD’s integration into
other self-supervised frameworks, potentially enhanc-
ing the robustness of methods like SimCLR or BYOL.
Additionally, testing this approach on larger and more
complex datasets would further reveal the role of batch-
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Figure 2: Enter Caption

level invariance. Our VICReg-MMD approach lays the
groundwork for more effective manifold-aware repre-
sentations, supporting a wide range of downstream ap-
plications.
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