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Vision and Image Processing Research Group, Systems Design Engineering, University of Waterloo

{kmcguiga, lcbdeloe, j2kurien, m45ali}@uwaterloo.ca

Abstract
This paper presents four architectures for predicting
tackle probability in an NFL football game. Accu-
racy, precision, recall, loss, and F1 scores are com-
pared to identify the best classification model for
the 2024 NFL Big Data Bowl. The models leverage
NFL tacking data, including player position, speed,
direction, and location relative to key field mark-
ers. Tracking information was processed to extract
meaningful plays, determine which features should
be used in the solution, and identify plays with suc-
cessful and unsuccessful tackle outcomes. A feed-
forward network is presented as a baseline, and
the performance of a convolutional neural network,
transformer, and graph transformer are compared.
The feed-forward network yielded an accuracy of
75%, which establishes the minimum accuracy of
a simple architecture that uses minimal features.
The convolutional network outperformed the base-
line with an accuracy of 85%, but performed worse
than the transformer and graph transformer, which
achieved accuracy results of 90% and 92%, respec-
tively. Ultimately, the graph transformer is found to
be most effective at predicting the tackle probability
for a league-average player.

1 Introduction

It is often said that offense wins games and defense wins
championships, and while not as glamorous as its high
scoring counterpart, a strong defense is critical to a solid
football team. Despite the importance of defenders, of-
fensive players have historically received more attention
when it comes to developing novel metrics to analyze
their performance [1, 2]. In response to this imbalance
in analytical focus, this paper presents a solution to the
2024 NFL Big Data Bowl: a Kaggle competition where
entrants propose novel metrics for tackling, which Na-

tional Football League (NFL) teams can use to inform
strategy [3].

Using data from the 2022 NFL season, we compare
four deep learning models that predict the probability
of a tackle occurring at different points within a play.
Models accept the past one second of play data and must
classify if a tackle will occur within the next half-second.
The best-performing model must, to a high degree of ac-
curacy, be able to determine the combination of player
position, speed, and orientation that should result in a
successful tackle. By comparing the expected and ob-
served outcomes, this metric will allow teams to com-
pare if a player’s tackling performance was above, be-
low, or equivalent to the league average. This strategy
can be extended by looking at the difference between
outcomes and expectations over a larger sample size of
plays to identify scenarios in which a player’s perfor-
mance deviates from the league average. This task is
best addressed by what we refer to as an ”expectation
model”, which predicts the ”correct” outcome based on
the league average. Consequently, the proposed model
cannot be extremely accurate (i.e., exceeding 99% accu-
racy) because it may indicate one of two things: either
every player always plays exactly like the league aver-
age, which is not true, or the model is over-fitting and
accounting for player specific details. As a result, model
success is verified by confirming that average accuracy
and error are consistent over the training, validation,
and test sets.

Sports analytics–which increasingly involves data-
driven approaches–is crucial for NFL teams to maintain
a competitive advantage. Analysis of historical data is
necessary to develop strategies, assess performance, and
improve player selection [4]. In turn, a classifier that
predicts tackle probability based on the league average
is useful for teams to identify both strong players and
loose cannons–those who either make home run tack-
les or miss completely. A league average prediction de-
termines the most probable outcome; a player’s perfor-
mance above or below this metric has the potential to
shape game strategy and player selection.

1



Journal of Computational Vision and Imaging Systems 2

2 Background

The four proposed deep learning models build on liter-
ature and submissions to previous Big Data Bowls. This
study presents a novel metric, and uses a private dataset.
Thus, in the absence of comparable models, we present a
simple feed-forward network (FFN), which acts as a per-
formance baseline. FFNs have been applied in previous
Big Data Bowl submissions [5], achieving success with
tasks such as tackle decomposition. Additionally, FFNs
have also been applied to football for predicting game
outcomes and developing player-specific movement at-
tributes, which inform play success [6], [7].

Convolutional neural networks (CNNs) perform well
on image and spatial data [8]. For tackle prediction,
CNNs are an appropriate model choice because they can
utilize the inherent spatial inductive biases. Specifically,
the data can be modeled spatially – each player’s ac-
tions are largely influenced by the players nearest to
them. Previous works have solved similar problems with
CNNs; these include the winning solution for the 2020
Big Data Bowl, which predicted yards gained by the
rusher during a running play [9]. Further, other works
(including [10] and [11]) utilized convolutional models
to predict the type of offensive and defensive coverage a
team employed. These works demonstrate the effective-
ness of CNNs for analyzing spatio-temporal NFL data.

Transformers are the current state-of-the-art archi-
tecture for long-term sequence-to-sequence modeling
[12]. NFL tracking data can be used as a temporal
sequence, where the model predicts tackles in future
frames. Thus, transformers are a viable architecture for
this problem. Transformers have also been used to solve
related problems, such as soccer matches [13]. We em-
ploy a similar approach to [13], where a transformer
predicts the next event and event location in a soccer
game. However, applying transformers directly by treat-
ing each frame as a token ignores the spatial relation-
ships between the players of a given frame. Previous
works propose spatio-temporal transformers to address
this limitation [14].

Alternatively, each frame in a sequence can be treated
as a graph neural network (GNN) rather than a single
large feature embedding, with the GNN being used as
a token [14]. GNNs are a class of neural networks de-
signed to work on graph-structured data. Nodes are
used to encode observations, typically represented with
a vector. Edges encode relationships between nodes,
and may or may not contain feature information of their
own [15]. Graphs are an efficient and meaningful rep-
resentation format for non-euclidean data that is diffi-
cult to model with a regular grid. Existing works have
applied graph neural networks to diverse fields such as

citation mining or protein-protein interactions [16]. The
structure of NFL play data can be considered irregu-
lar due to the intricate interactions between individual
players. To address the tackle prediction problem, ex-
tracting and disseminating features from nearby play-
ers would be beneficial. Using a traditional GNN, how-
ever, would ignore the temporal relationship between
the frames. Other works have proposed layers to lever-
age such spatio-temporal data [17], [18].

3 Methodology

The development of the tackle prediction model started
with dataset preprocessing 3.1 to ensure compatibility
with model requirements. Four distinct architectures
were then hyperparameter tuned, trained, and evaluated
on their ability to predict tackles.

3.1 Dataset
Data from the 2022 season is provided by the NFL Next
Gen Stats team and Pro Football Focus [3]. The dataset
includes plays where a rush (the offense runs with the
ball), scramble (the quarterback makes an impromptu
evasive maneuver), or completion (a forward pass suc-
ceeds) occurs. Tracking data is comprised of 66 features,
which track defensive contact events and player statis-
tics by game, play, and player ID [3].

Only a subset of features relate to our metric, so
exploratory data analysis (EDA) guided feature selec-
tion. Game footage was compared to the data, and
event flags were found in the frame preceding the
tackle. We analyzed the 28 event types, noting event
flags before tackles, and cropped plays to start at the
’pass outcome caught’ flag, ensuring the ball carrier al-
ways has possession. Plays with multiple carriers or rare
events, like scrambles, were excluded. Eighteen mean-
ingful events were selected, and plays were mirrored so
the offensive team always moves right, avoiding direc-
tional bias.

Out of 66 features, ten core features were chosen:
game ID, play ID, NFL ID, ball carrier ID, play frame, X
and Y position, speed, direction, and event flag. Twelve
additional metrics were calculated per player: distance
to the ball carrier, distance to the line of scrimmage, dis-
tance to the first down marker, distance from a team’s
end zone, distance from the opposing team’s end zone,
X and Y components of direction, X and Y components
of speed, change in X and Y position, and location rela-
tive to the ball carrier. A combination of these features
is used in the CNN (3.3), transformer (3.4), and graph-
transformer (3.5) architectures. Distance, position, and
orientation features are required for models that frame
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tracking information relative to the ball carrier. Rela-
tive distance features are necessary because strategy can
differ based on proximity to the line of scrimmage, first
down marker, and end zone.

For classification, play sequences were identified as
positive or negative based on the tackle outcome, with
models using 10-frame inputs starting 15 frames from
the ground truth. Positive events are plays that end in a
successful tackle, while negative events end in first con-
tact. First-contact events were chosen as unsuccessful
tackles because the data would exhibit similar behaviour
to a successful tackle. Here, the defense still converges
on the ball carrier, making it more challenging to predict
a tackle compared to a sequence where the defense is far
behind. Models use a training:testing:validation split of
70:20:10, with positive and negative events being evenly
distributed across the sets.

3.2 Feed-Forward Network
The feed-forward model uses the data format described
in Section 3.1. A custom PyTorch data loader uses four
features: x-position, y-position, speed, and direction.
The feed-forward model acts as a performance base-
line; thus, it uses the subset of features from the three
other models, which are included in the competition
dataset. X and Y position are scaled based on the maxi-
mum values for the dataset. Speed and distance use their
mean and standard deviations for normalization. These
processes are used to improve model performance and
training stability. The final architecture is summarized
in Table 1, and illustrated in Figure 1.

Table 1: Optimized architecture for the feed-forward net-
work.

Parameter Value

Batch size 1
Dropout probability 0.6

Number of layers 2
Batch normalization True
Activation function ReLU

Learning rate e-6 to e-8
Scheduler Lambda
Optimizer ADAM

Loss Binary Cross Entropy
Number of epochs 20

3.3 Convolutional Neural Network
The CNN architecture was inspired by the winner of
the 2020 Big Data Bowl [9]. Additionally, the data pro-
cessing was informed by [19], which modeled time se-
ries data as 2D images for convolutions. Here, play

data was restructured to resemble a 2D image for the
CNN, with an input shape of 12x22x10, where 12 rep-
resents player metrics, 22 the number of players, and
10 the frames in a sequence. The restructuring process
begins with handling 2D/tabular features, such as posi-
tion, which are 10x22 matrices representing player po-
sitions across frames. A custom PyTorch Dataset class
transformed these matrices into 3D volumes, like multi-
channel images, with each feature normalized. Position
metrics used known maximum values (based on field di-
mensions), while others were normalized by their mean
and variance. The 2D matrices were then concatenated
into a 3D volume. Additionally, the 1D ballCarrier array,
indicating which player had the ball, was converted into
a one-hot encoded 10x22 matrix and concatenated with
other features. The model’s architecture is composed of
two major sections: a series of convolutional blocks, fol-
lowed by fully connected layers. The results of tuning
are summarized in Table 2, and is illustrated in Figure 2.

Table 2: Optimized architecture for the convolutional neural
network.

Parameter Value

Batch size 2048
Dropout probability 0.2579

Number of conv layers 5
Kernel size 2

Batch normalization True
Activation function Tanh

Learning rate 0.0618
Scheduler Plateau
Optimizer ADAM

Loss Binary Cross Entropy
Number of epochs 80

3.4 Transformers

The model (Figure 3) is based on the original transformer
presented in [20], and is similar to the architecture in
[13]. Each frame is treated as a unique token by concate-
nating the features of all 22 players in that frame. Our
model begins by projecting high-dimensional tokens to
a lower-dimensional subspace to boost computational
efficiency and compression. A zero-initialized xclass to-
ken, used to predict tackles, is added to the 10 frames,
followed by layer normalization. Positional information
is added with sinusoidal non-learnable encodings. The
model then uses a multi-head transformer encoder for
attention across the 11 tokens. After encoding, thexclass

token is fed into a 64-unit hidden layer, activated, and
passed to a single neuron output layer. A Sigmoid ac-
tivation function provides the probability of a tackle in
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Figure 1: Diagram of the feed-forward network. A sigmoid activation function provides the probability of a tackle in the next frame.

Figure 2: Diagram of the convolutional neural network. A sigmoid activation function provides the probability of a tackle in the
next frame.

Figure 3: Diagram of the transformer model. A sigmoid activation function provides the probability of a tackle in the next frame.

the next frame. The optimized architecture is summa-
rized in Table 3

Table 3: Optimized architecture for the transformer.

Parameter Value

Dropout probability 0.29
Number of layers 2

Dimension of feed forward layer 256
Number of heads in attention layer 5

Dimension of tokens 50
Activation function Tanh

Learning rate 2e-5
Weight decay 9e-3

Optimizer ADAMW
Loss Binary Cross Entropy

Number of epochs 20

3.5 Graph Transformers
Building on the concept of graph neural networks (Sec-
tion 2), the final proposed model is a graph transformer.
This architecture (Figure 4) required modifications to the
play data, focusing on the field state half a second before

tackle prediction. All player features and inter-player
features (e.g., distances, relative positions) are included
if players are within 12 yards, limiting edge growth.
Graphs are batched with eight disconnected compo-
nents and passed through spatial blocks implementing
modified graph attention. Self-loops are removed, re-
placed by a linear transformation on each node, and skip
connections allow for selective node updates. Nodes are
aggregated by feature channel, concatenated, and fed to
a projection head for tackle/no-tackle prediction. Hy-
perparameters and architecture specifications such as
node and edge dimensions are summarized in Table 4.

Table 4: Optimized architecture for the graph transformer.

Parameter Value

Number of graph attention layers 4
Node dimensions 16
Edge dimensions 5

Learning rate 0.01
Optimizer ADAM

Loss Binary Cross Entropy
Number of epochs Early Stopping
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Figure 4: Diagram of the graph transformer architecture. Spatial blocks employ a graph attention layer, which uses edge embeddings
to determine attention scores between nodes and an additional self-attention component created from a linear layer. The embedded
nodes are aggregated as both a mean and max over the entire graph, and the concatenated results are fed into a projection layer to
get a single predicted value. A sigmoid activation function provides the probability of a tackle in the next frame.

4 Results

A summary of model performance is provided in Ta-
ble 5. Tackle projection is framed as a binary classifi-
cation problem; thus, Binary Cross-Entropy Loss, Ac-
curacy, Precision, Recall, and F1-Score were selected as
performance metrics. These metrics are computed and
reported for the test dataset.

Table 5: Performance of each model across various metrics on
the Test dataset.

Metric FFN CNN Transf GTransf

Cross-Entropy Loss 0.51 0.36 0.40 0.20
Accuracy 0.75 0.85 0.90 0.92
Precision 0.80 0.86 0.91 0.95

Recall 0.83 0.92 0.93 0.92
F1 Score 0.82 0.89 0.92 0.93

4.1 Feed Forward Network
The feed-forward model was not expected to yield ac-
curacy as high as the other models and was meant to
provide a baseline for which to compare them. Notably,
tuning was required to prevent the model from overfit-
ting as a result of network depth, batch size, and learn-
ing rate. The model converged at 73%, 74%, and 75% for
the respective training, validation, and test datasets. The
loss was similarly comparable (0.51,0.52, and 0.51). The
test set reported a precision of 80.23%, recall of 83.00%,
and f1 score of 81.59%. These results are reiterated in
Table 5.

4.2 Convolutional Neural Network
Table 5 summarizes the performance metrics for the
tuned network compared to the baseline FFN. During
tuning, the convolutional neural network with the best
validation loss after tuning was selected. A combi-

nation of the hyperbolic tangent activation function,
low dropout probability, normalization, a learning rate
scheduler, and increased network depth improved per-
formance.

When comparing the classification metrics, the CNN
performed better than the feed-forward network, but
underperformed relative to the transformer and graphs
networks. Notably, the metrics across splits for the net-
work were relatively similar. The train, validation, and
test loss were all approximately 0.36 (0.368, 0.368, and
0.365 respectively). Additionally, accuracies were simi-
lar across train, validation, and test splits, all close to 85%
(85%, 83%, and 85% respectively). This is in line with the
goal of creating a model that has predictive capability
but does not overfit.

4.3 Transformer
The results of the Optuna study (Table 3), revealed that
a combination of the tanh activation function, lower
learning rates, higher weight decay, and low dropout
rates helped the model train. Furthermore, smaller to-
ken dimensions, fewer encoder layers, and fewer atten-
tion heads help the model achieve better results. The
Optuna run with the lowest validation loss was selected
as the final transformer model. It far outperformed the
feed-forward baseline, achieving an accuracy of 90%.
Further, the test set produced nearly equal precision, re-
call, and f1 score (all over 90%), indicating that the model
is effective at both tackle and non-tackle event predic-
tion. Accuracies were similar across train, validation,
and test splits, all close to 90% (95%, 90%, and 90% respec-
tively). This is in line with the goal of creating a model
that has predictive capability but does not overfit.

4.4 Graph Transformer
The hyperparameter tuning results (Table 4) showed
that smaller node dimensions, no edge updating, and
the use of five-dimensional edge dimensions achieved
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the best performance. The graph transformer was the
most successful architecture. This was expected due to
its ability to effectively process spatial information. The
graph transformer achieved a test accuracy of 92% and
performed similarly for training and validation (91% and
92%). Further, it achieved recall, precision, and F1 scores
of 92%, 95%, and 93%, respectively. Since these results
were found on the test set and were comparatively simi-
lar to those in the validation and training set, it is fair to
conclude that the graph transformer was successful at
generating play expectations given the first contact and
the tackle frames that were provided.

5 Discussion

Overall, all three advanced models (CNNs, Trans-
formers, and Graph Transformers) outperformed the
FFN baseline (Table 5). These models achieved high
performance on the test dataset. Further, accuracy,
precision, and recall indicate that the models can predict
what player and team configurations lead to successful
tackles. All models performed equivalently over the
training, test, and validation sets, verifying that these
accuracies do not result from overfitting.

5.1 Limitations of the model

As anticipated, the feed-forward network performed
poorly, failing to achieve ”reasonable accuracy” (Section
1). These models lack the structure to capture spatial
sequences, making them sensitive to noise and prone
to overfitting. Additionally, the model used a limited
feature set without the ball-carrier references, which
proved essential for understanding play dynamics. En-
hancing the feature space to include relative position-
ing could improve results; however, the model will likely
continue to under-perform relative to the other three ar-
chitectures.

The convolutional neural network could benefit from
structuring 2D features with spatial and temporal local-
ity, as well as incorporating ball-carrier-relative metrics.
Use of advanced architectures like ResNets [21], which
feature residual connections, may also enhance perfor-
mance. The Transformer exploited temporal but not spa-
tial data, treating each frame as a single token without
considering individual players. Future work could ex-
plore spatio-temporal transformers (e.g., [14] and [22])
to capture within-frame spatial interactions. Finally,
Graph Transformers modeled spatial information well,
with players as nodes and edges between close players.
Their success suggests spatial data may be more criti-
cal than temporal data for this problem. However, they

only used field state a half second before tackle predic-
tion, missing temporal player movements. Adding tem-
poral data and expanding the edge cutoff could improve
performance, capturing relationships like that between
a quarterback and receiver.

Overall, none of the models fully leveraged both spa-
tial and temporal information, limiting their ability to
capture complex player interactions, such as defenders
positioning to block escape routes. Modeling these in-
teractions over time would likely yield stronger insights
from player tracking data.

5.2 Limitations in Data

Data quality in the 2024 Big Data Bowl presented a
major limitation due to missing and mislabeled plays.
While we removed these plays from the dataset, indi-
vidual plays must be compared to game footage to ver-
ify that the correct flag was applied. Thus, it is likely
that a subset of the plays are incorrectly flagged. Addi-
tionally, the classification of tackle events is dependent
on human interpretation. Inconsistencies in the flagging
of when a tackle event begins and differences in tackle
length both contribute to ambiguities in data labels.

5.3 Conclusions

In this paper, we assess the performance of four deep
learning models, which predict the probability of a
tackle event given a second of position, direction, and
speed data for both offensive and defensive NFL play-
ers. Three potential models (a convolutional neural net-
work, transformer, and graph transformer) were com-
pared against a baseline feed-forward network. Ulti-
mately, the graph transformer was found to be most ef-
fective, indicating that the spatial connectivity of other
players in relation to the ball carrier was key to de-
termining the likelihood that a tackle would happen.
The transformer achieved the next best performance,
demonstrating the importance of temporal information
within the plays. These networks are capable of success-
fully predicting league-average performance for post-
game analysis of tackles. As a result, NFL teams can as-
sess the performance of a defensive player by comparing
the actual play to the model’s prediction.
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