
MKNO: Multi-Kernel Neural Operator

Kiernan McGuigan1

K. Andrea Scott2, Sirisha Rambhatla3, Coauthor Coauthor1,
1Vision and Image Processing Group, Systems Design Engineering, University of Waterloo

2Mechanical and Mechatronics Engineering, University of Waterloo
3Management Science and Engineering, University of Waterloo

{kmcguiga, ka3scott, sirisha.rambhatla}@uwaterloo.ca

Abstract
Neural operators learn resolution independent map-
pings between functional spaces, and are a pop-
ular way to generate solutions for an entire class
of partial differential equations (PDE) as opposed
to just one instance, leading to significant compu-
tational gains. However, these methods rely on a
continuous-discrete equivalence between the func-
tional form and the samples, which may be vio-
lated if the samples are not captured faithfully. We
propose the multi-kernel neural operator (MKNO)
which can capture different frequency components
at varying levels of resolutions. MKNO accom-
plishes this by using the Fourier kernels to capture
lower frequency global information and graph ker-
nels to capture more local and high frequency fea-
ture information. MKNO is descretization invariant,
and learns a general solution operator that can be
applied to varying resolutions without retraining.
To validate our architecture we apply MKNO to a
number of different two dimensional PDEs and ob-
serve strong results.

1 Introduction
Partial Differential Equations (PDEs) are fundamental
to various applications across science and engineering,
including fluid dynamics [1, 2], aerodynamics [2], and
mechanical systems [3]. Traditionally, these equations
have been solved using numerical methods [4], how-
ever many applications rely on high resolution and fine
grained solutions in which these methods can be slow
and inefficient [5]. More recently, machine learning
techniques have been leveraged for their ability to learn
to approximate functions, allowing for the solving of
these equations in a more efficient manner [6].

Early machine learning techniques included directly

parameterizing a solution function as a neural network.
This method, dubbed neural finite element method (neu-
ral FEM), is mesh invariant and has proven to be highly
effective for solving PDEs [7, 8]. While effective, this
method is designed to solve a singular instance of a PDE,
rather than generalizing more broadly [5]. Learning one
specific solution function means each new instance of
the PDE requires retraining. Moreover, because this ap-
proach closely resembles traditional numerical methods
for solving PDEs, the same computational scaling is-
sues exist, limiting the general applicability of these ap-
proaches [9, 5].

Another group of methods involve parameterizing
finite-dimensional operators [10, 11] as a neural net-
work to map between finite dimensional domains.
While these methods can be accurate, by operating be-
tween finite-dimensional domains they are inherently
tied to a specific data resolution. This requires retraining
for any different discritization of the domain, meaning
the model would be unable to accurately make predic-
tions on any mesh other than the one it was trained on.

More recently operator learning has been gaining
popularity for its ability to model solution operators in
a mesh free manner [12]. These methods aim to lever-
age some continuous representation of our input data
to parameterize a neural network as an infinite dimen-
sional operator [5]. This allows a single set of network
parameters to generalize to arbitrary data resolutions.
Since many real world processes are continuous in na-
ture, this flexibility with respect to data resolution can
be extremely advantageous for many applications. An-
other advantage of this flexibility is the ability to train
at a lower resolution while still retaining the same accu-
racy at inference time on potentially higher resolution
samples. Since training a model is typically more mem-
ory and computationally expensive that running infer-
ence, reducing the resolution of data can greatly increase
our efficiency both memory-wise, computationally, and
in the time to train.
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To accomplish this a continuous functional repre-
sentation is obtained from the discrete observations
and a kernel function is used to map between func-
tional spaces. Therefore, operator methods rely on a
continuous-discrete equivalence [13, 14] which makes
this representation possible [13]. Kernel functions then
learn to map between infinite dimensional spaces. Some
examples of these kernel functions include the graph
kernel operator [9, 15, 16, 17] and the Fourier kernel op-
erator [5, 18, 17, 19].

Graph kernel operators parameterize a graph neural
network with nodes connected based on real world dis-
tance and edge information encapsulating distances and
spatial locations. This establishes a constant visual in-
formational radius, irrespective of the input data resolu-
tion [9]. In theory the flexibility of graphs should allow
for any continuous function to be effectively modeled
with enough message passing layers, however in prac-
tice graphs struggle to achieve this in an efficient man-
ner. To limit computational complexity, the input graph
is typically not fully connected, with edges only being
placed between nodes within some real world distance
threshold. This means that the graph will require more
and more layers to effectively communicate global fea-
ture information around the entire domain [15, 17].

Alternatively, Fourier kernel operators leverage the
fast Fourier transform (FFT) and multiply learned ker-
nel weights in the frequency domain, acting as a fixed
frequency global convolution [5]. While this results in
a highly efficient method and is extremely effective at
capturing global feature information, the Fourier repre-
sentation struggles to capture higher frequency and lo-
calized feature information [19].

In this paper, we propose a multi-kernel neural oper-
ator architecture that leverages both graph and Fourier
kernel operators to efficiently and effectively capture
both high frequency local feature information as well
as lower frequency global feature information simulta-
neously.

2 Proposed Methodology

2.1 Neural Operator
The goal of a neural operator is to map between infinite
dimensional spaces based on a finite set of input-output
observations. To define this concept we can begin with
some bounded domain D in which we have real-valued
functionsA andU . There exists some mappingG : A→
U , which we will call the solution operator. Suppose we
are given observations {aj , uj}Nj=1 where aj ⊂ A, uj ⊂
U our goal is to approximate the solution operator G
with Gθ, θ ∈ Θ, where Θ is some parameter space, to

map from inputs to outputs.

Gθ : A→ U, θ ∈ Θ (1)

To optimize these parameters θ we can define a cost
function C which we minimize.

min
θ∈Θ

Ea[ C(Gθ(a), G(a) ] (2)

The approximate solution operator Gθ , which maps
between functional spaces, is comprised of a number of
iterative point-wise and kernel operator layers [5, 9].

Gθ = Q ◦Kl ◦ · · · ◦K0 ◦ P (3)

Where P is a point-wise transform used to map the
input function a ∈ A to some higher dimensional latent
representation ν(0), thus P : a → ν(0). Q is another
point-wise transformation that maps latent space to the
output dimensions Q : ν(l) → u. Between these we
apply l kernel layers which aim to approximate the so-
lution operator Kl : ν(l − 1) → ν(l) using the kernel
function κl within the domain x, y ∈ D.

νl(x) =

∫
D

κl(x, y) νl−1(y) (4)

2.2 Graph Kernel Operator
The graph kernel uses a kernel function to transform
the messages in the message passing layers of the graph
neural network (GNNs) [9, 15]. To efficiently perform
this operation, only nodes within a radius r are con-
nected together. Therefore multiple layers are used to
approximate a kernel capable of sharing information
across the entire domain.

νl+1(x) =
1

|N(x)|
∑

y∈N(x)

Kl(e(x, y) · ν(y)) (5)

Where N(x) is the set of nodes connected to query
point x and |N(x)| is the count. e(x, y) is the edge
connecting observations x and y and is commonly com-
posed of domain indexes x, y as well as the input func-
tion values a(x), a(y).

2.3 Fourier Kernel Operator
Fourier kernels [5], were motivated by the use of Fourier
decomposition to solve PDEs. These also take advantage
of the efficiency of the fast Fourier transform (FFT) and
the ability to parameterize global spatial convolutions as
multiplications in the spectral domain.

νl+1(x) = F−1(F(κϕ) · F(νl−1))(x), (6)
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where F is the FFT, F−1 is the inverse FFT, and κϕ is
the convolutional kernel weights. In practice we learn
weights Rϕ directly in the Fourier domain.

2.4 Multi-Kernel Neural Operator
We propose a novel multi-branch kernel to efficiently
handle both local and global feature information. To ac-
complish this we define a kernel that combines both the
Fourier kernel and the graph kernel in parallel branches.
We can define this mathematically as;

KFourier = F−1(F(κ
(1)
ϕl

) · F(νl−1))(x) (7)

Kgraph =
1

|N(x)|
∑

y∈N(x)

κ
(2)
l (e(x, y) · ν(y))(x) (8)

νl+1(x) = KFourier(x) +Kgraph(x) (9)

Where ν is the latent high dimensional representa-
tion, F ,F−1 is the Fourier transform and its inverse,
κ1ϕ is the Fourier kernel weights, N(x), |N(x)| are the
connected nodes and its count, e(x, y) is the edge infor-
mation between connecting nodes, andK2

l is the kernel
weights for the graph branch.

By using both kernels in combination we aim to main-
tain a stronger continuous-discrete equivalence irre-
spective as to weather we have low frequency global
feature information, higher frequency local feature in-
formation, or a combination of the two. This allows us
to faithfully capture the continous-discrete equivalency
for more equations and under more conditions.

As with most neural operators we use a lifting layer
P : a→ ν0, a point-wise fully connected layer taking as
input the last T solutions to the PDE and producing the
high-dimensional latent representation ν0(x). Follow-
ing this we apply a number of MKNO blocks mapping
between latent representations MKNOl : νl−1 → νl.
Finally, we apply a projection layer Q(x) : νl(x) →
u(x) mapping back down to the output dimensionality
from the latent representation. Within the MKNO block,
two kernels are applied in parallel with their results be-
ing summed before applying a non-linearity

3 Experiments

3.1 Metrics
To evaluate the results the relative errors are reported
[5]. Relative error divides the sum of squares of resid-
uals for each training sample by the sum of squares of
the targets. This attempts to remove the impact of abso-
lute value differences between different realizations of

the PDE in our loss function. We report the relative er-
ror at the full and half resolutions. Error metrics are re-
ported for both the full 64 by 64 resolution and the half
32 by 32 resolution that models were trained on.

3.2 Baselines
We compare our multi-kernel neural operator with a
number of other popular operator based methods and
non-operator based methods. We compare against
Fourier neural operator [5] and Adaptive Fourier Neu-
ral Operator [20, 21] which leverage the Fourier kernel,
and GNO [9] which leverages the graph kernel. We also
present a GNN model inspired by the FNO paper [5]
but with spatially invariant edge connectivity. Lastly
we compare with a Conv LSTM [22] for our time based
PDEs and a simple convolution network for our non-
time based PDEs.

3.3 Equations
All our PDEs were generated with a resolution of 64 by
64. When training the resolution was reduced to 32 by
32. All results presented will be generated at the full
(64 by 64) resolution or the half (32 by 32) resolution on
a set of test data that was withheld during the training
process.

3.3.1 Darcy Flow

Steady-state Darcy flow is described by the second order
linear elliptic PDE,

−∇ · (a∇u) = f (10)

with forcing term f = 1 and diffusion coefficient a ψ#µ
with µ being defined as a Gaussian Process with zero
mean and squared exponential kernel [13].

Table 1: Relative Error for the Darcy Flow equation. Full
resolution is 64 by 64 while half resolution is the 32 by 32
grid that models were trained on. All metrics are calcu-
lated on a test set of data that was withheld at training.

Relative Error

Model Full Resolution Half Resolution

Conv 0.2268 0.2593
FNO 0.1326 0.1304
AFNO 0.1527 0.1548
GNO 0.1555 0.1609
GNN 0.1516 0.1492
MKNO 0.1097 0.1010
MKNOeff 0.1242 0.1190
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Figure 1: The Multi-Kernel Neural Operator diagram displays our methodology. We show both the Fourier branch and
the graph branch used by our multi-kernel operator which are applied in parallel before their results are summed.

3.3.2 Poisson Equation

The linear elliptic PDE is described as,

−∆ = f (11)

with source term f being defined by a complex periodic
function over the domain [13].

Table 2: Relative Error for the Poisson equation. Full res-
olution is 64 by 64 while half resolution is the 32 by 32
grid that models were trained on. All metrics are calcu-
lated on a test set of data that was withheld at training.

Relative Error

Model Full Resolution Half Resolution

Conv 0.1506 0.1554
FNO 0.0973 0.0974
AFNO 0.1509 0.1435
GNO 0.1684 0.1709
GNN 0.1609 0.1633
MKNO 0.1017 0.1031
MKNOeff 0.0861 0.0855

3.3.3 Wave Equation

A linear hyperbolic PDE described as,

utt − c2∆u = 0, u0(x, y) = f(x, y) (12)

with constant propagation speed c = 0.1 initial condi-
tions f [13].

3.3.4 Allen-Cahn Equation

The parabolic nonlinear PDE can be described as,

ut = ∆u− ϵ2u(u2 − 1) (13)

with reaction rate ϵ = 220 and initial conditions f [13].

Table 3: Relative Error for the Wave equation. Full res-
olution is 64 by 64 while half resolution is the 32 by 32
grid that models were trained on. All metrics are calcu-
lated on a test set of data that was withheld at training.

Relative Error

Model Full Resolution Half Resolution

Conv 0.1746 0.1561
FNO 0.0636 0.0606
AFNO 0.1603 0.1530
GNO 0.1752 0.1705
GNN 0.1808 0.1783
MKNO 0.0717 0.0688
MKNOeff 0.0659 0.0627

3.3.5 Navier-Stokes Equations

The incompressible fluid motion PDE is describe as,

ut + (u · ∇)u+∇p = ν∆u, divu = 0 (14)

with viscosity ν = 1e−5 and time steps t ∈ [1, 20] of
which the first ten are input to the operators and the
last ten are to be predicted.

4 Conclusion

In conclusion, in this paper we present a novel neural
operator method MKNO which demonstrates a strong
ability to faithfully capture both low frequency global
feature information along with higher frequency more
localized feature information simultaneously. This al-
lows our method to be more robust for different PDEs
with more complex dynamics, something that can be ex-
tremely applicable in different circumstances.
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Table 4: Relative Error for the Allen-Cahn equation. Full
resolution is 64 by 64 while half resolution is the 32 by 32
grid that models were trained on. All metrics are calcu-
lated on a test set of data that was withheld at training.

Relative Error

Model Full Resolution Half Resolution

Conv 0.4996 0.4849
FNO 0.2314 0.2270
AFNO 0.5116 0.4974
GNO 0.5185 0.5214
GNN 0.4900 0.4822
MKNO 0.2374 0.2301
MKNOeff 0.2281 0.2251

Table 5: Relative Error for the Navier-Stokes equation.
Full resolution is 64 by 64 while half resolution is the
32 by 32 grid that models were trained on. All metrics
are calculated on a test set of data that was withheld at
training.

Relative Error

Model Full Resolution Half Resolution

ConvLSTM 0.5592 0.4600
FNO 0.1284 0.1277
AFNO 0.4207 0.4118
GNO 0.4908 0.4934
GNN 0.4766 0.4639
MKNO 0.1255 0.1254
MKNOeff 0.1361 0.1347
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