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Abstract
Video generation models have recently showcased
impressive results, generating high quality visual
features with realistic physics and motion. Such
video generators are intriguing for robotics because
after fine-tuning to the robotic embodiment, have
the potential to serve as generalizable world mod-
els and real-world simulators. Among video genera-
tion approaches, masked video transformers provide
a computationally efficient alternative to diffusion-
based methods. Building on recent successes of Mix-
ture of Experts (MoE) in transformer architectures,
we propose a novel approach to improve pre-trained
robotic video transformers using sparsely gated
MoE. Our method replaces the feedforward layers of
the transformer block with sparely gated MoE lay-
ers. We also introduce an innovative weight initial-
ization scheme that improves training convergence
while fine-tuning masked video transformers. We
evaluate our method on the 1xgpt humanoid robotic
dataset, demonstrating improvements in both cross-
entropy loss (0.07 reduction) and LPIPS scores (0.007
reduction). Our findings suggest that MoE-based
fine-tuning with strategic weight initialization can
enhance the performance of robotic video trans-
formers while maintaining computational efficiency
through sparse expert activation.

1 Introduction

Large foundation models pre-trained on large and di-
verse datasets have led to incredible progress in gener-

ating text, images, and video [1]. Robotics is another do-
main where foundation models have showcased promis-
ing results ([2], [3]). For example, generative approaches
to learning manipulation policies have shown remark-
able behavior, such as the ability to execute complex
trajectories. However, the performance of such robotic
foundation models suffer from limited reliability and
generalization, in part due to the lack of pre-existing
internet-scale robotic datasets and the cost of collecting
real-world robot trajectories.

Interactive real-world simulators, models that gener-
ate future image frames of the environment conditioned
on past frames and actions, offer a solution to the data
shortage. While robotic policies require successful tra-
jectories to learn from ([4], [2], [3]), video simulators can
leverage much broader and diverse datasets to general-
ize in many more domains. For example, video data on
the internet, robotic data from different embodiments,
and failed robot trajectories can still be useful to the
video simulator to learn general-purpose visual features
and intuitive physics of the world. Such a simulator or
video generator could serve as a world model [5] for
robotics. They can be used to train robotic policies on di-
verse scenarios, plan a sequence of actions without try-
ing them in the real-world, and predict changes in the
environment [6].

For video simulators to be effective in robotic plan-
ning and training robotic policies, they must be visu-
ally realistic, model the physics of the world accurately,
and efficiently execute on robotic hardware. A popu-
lar approach to video generation is to train transform-
ers with flow-matching [7] and denoising diffusion ob-
jectives ([8], [9]). However such models are computa-
tionally expensive to sample from during inference. An
alternative approach to visual generation is using auto-

1



Journal of Computational Vision and Imaging Systems 2

regressive and bi-directional transformers [10]. Such
generative transformer based approaches are computa-
tionally efficient, taking orders of magnitude fewer sam-
pling steps [11].

Sparsely gated mixture of experts (MoE) ([12]) has
recently been used to improve performance of many
language models ([13], [14]). Such architectures train
a multitude of specialized experts, but activate only
a sparse set of experts during any given inference.
Sparsely gated MoE thus allow models to maintain effi-
ciency while containing many parameters, by activating
a smaller number of weights during inference.

In this paper, we explore the usage of mixture of
experts in bi-directional transformers for robotic video
generation. We investigate if adding MoE layers to a pre-
trained robotic video generator improves performance.
Furthermore, we propose a novel method to initialize
MoE layers in such fine-tuning cases to enable faster
training convergence. We evaluate our method on the
tokenized frames of the 1xgpt humanoid robotic dataset
[15]. Our findings showcase that the MoE layer with
our weight initialization scheme yields an improvement
of 0.07 on cross entropy loss and 0.007 on the Learned
Perceptual Image Patch Similarity (LPIPs) metric.

2 Problem Formulation

Let t ∈ [0...T ] represent time, V ∈ RH×W denote
frames of a video, and a represent embeddings of ac-
tions taken by the robot. Robotic video simulators utilize
past video frames V1...t to generate future video frame
Vt+1. Such a next-frame video simulator can be called
autoregressively to predict frame Vt+2, and so on. In-
teractive robot simulators generate future frames Vt+1

conditioned on past video frames V1...t and past actions
a1...t. As we focus on architecture design, we use a non-
interactive robot simulator (i.e. do not condition video
generation on actions). In this paper, our robotic simu-
lator is a pre-trained masked video transformer, and our
goal is to improve its performance on the given dataset.

3 Background

Learning to generate video frames within the high di-
mensional H ×W pixel space can be slow and compu-
tationally expensive. Variational Auto-encoders (VAEs)
[16] can be used to compress the large image spaces into
a much smaller z ∈ RH′×W ′

latent space. Vector Quan-
tized Variational Auto-encoders (VQ-VAEs) [17] are also
trained to reconstruct data samples from a variational
objective; however, their latent space zk ∈ RD, k ∈
1, ...,K is discretized into a finite vocabulary or code-

book of size K using a quantization scheme. The smaller
discretized latent spaces of VQ-VAEs allow for utilizing
sequence-to-sequence transformers ([18]) rather than
computationally expensive methods like denoising dif-
fusion ([19], [20]) and Flow-Matching ([7], [21]). Fur-
thermore, such approaches allow for drawing inspira-
tion from language models, which also operate on dis-
cretized embeddings.

Various transformer-based approaches have been
used to generate images and videos. DALL-E [22]
used image transformers to generate images autore-
gressively. Mask-GIT [23] trained a bidirectional trans-
former to generate images from a quantized latent space
using a masking training objective. It also proposed a
novel non-autoregressive decoding method to synthe-
size images in finite and fewer computational steps than
many prior diffusion [24] and autoregressive genera-
tion strategies. MAGVIT [25] extended Mask-GiT to
video generation by using a spatio-temporal VQ-VAE
and an improved masking scheme. MAGVIT2 [11] im-
proves MAGVIT by designing an improved VQ-VAE to-
kenizer, yielding better image and video generation re-
sults than diffusion baselines and in much fewer sam-
pling steps. Open-MAGVIT2 [26] contains an open-
source implementation of the VQ-VAE tokenizer de-
scribed in MAGVIT2.

Mixture of Experts [27] is an architecture design strat-
egy based around training multiple experts that special-
ize in different behaviors and different subspaces of the
input data. A gating mechanism is used to select the
contribution of each expert in the output signal. MoE
designs have found extensive applications in language
models ([13], [14]). Many of these works utilize the
sparsely gated Mixture of Experts variant [12], where
contributions are weighted from a sparse set of experts
rather than taking a weighted contribution of all experts.

4 Methodology

We detail the modifications we make to the architecture
of the pre-trained transformer in 4.1. The weight initial-
ization scheme is described in 4.2.

4.1 Architecture
We replace the feedforward block in each of the trans-
former blocks with sparsely gated MoE layers. The feed-
forward layers can account for as much as 90% of the
parameters within multi-modal transformers [28]. By
improving these feedforward layers, we can potentially
have a substantial impact on the performance of the
transformer.

Our mixture of experts layer MOE consists of N ex-
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pert networks {f1, ...fN} and a gating network g. Each
expert fi projects input x to some higher dimensional
hidden embedding with a linear layer, applies a non-
linear activation function, and finally projects the hid-
den embedding back to its original embedding size. The
gating network is a linear network that predicts an N

dimensional vector containing the weight/contribution
of each expert in the final output. The gating network
simply projects the input x to an N dimensional vector
before applying a softmax activation. We use a sparsely
gated MoE, where the weights associated with each ex-
pert (Eq.1) are sparsified with a topK function:

w = softmax(topK(g(x), k)) (1)

topK(x, k)i =

{
xi, if xi in k largest elements of x
−∞, otherwise.

(2)

MOE(x) =

N∑
i=1

wifi(x) (3)

The topK function (Eq.2) retains the weights of the k
largest entries and sets the other entries to −∞. The
softmax function ensures that the weights sum to one,
and that the final contribution of entries with −∞ is
zero. The final output (Eq.3) of the MoE layer is simply a
weighted sum between the activated experts fi and the
associated weights of the expert wi. Such a sparse gat-
ing scheme saves computational resources, as the pre-
dictions of only a subset of the experts need to be com-
puted. To encourage equal utilization of the experts, we
incorporate router z-loss Lz and auxiliary load balanc-
ing loss LB [29] into our training objective.

4.2 Weight Initialization
Naively replacing the feedforward layers with sparsely
gated MoE layers leads to poor training convergence.
After 10k training iteration, the training cross-entropy
loss remained over 10, even though the training loss of
the original fine-tuned model was 8.6.

Instead of initializing the MoE layers randomly, we
instead initialize each of the N experts with the weights
of the corresponding feedforward layer, which was pre-
viously fine-tuned on the dataset but replace by the MoE
layer. The gating networks however are still initialized
with random weights. Although each of the experts is
initially identical, each expert eventually learns differ-
ent weights due to the sparse aggregation scheme and
the randomness caused by the gating network. In each
mini-batch, the gating network picks a different set of
experts, in part due to changes in the data and due to the
randomness of expert selection by the gating network.

Thus, the weights of each expert is optimized based on
features from different data and combinations of previ-
ous experts. With this new initialization scheme, the
training loss was able to match that of the fine-tuned
model after 9k training iterations. Note that such an
initialization scheme requires that each of the experts
share the same architecture (hidden dimensions) with
the original pre-trained transformer.

5 Experiments and Results

Dataset. We use the 1xgpt dataset [15] to train and eval-
uate our video simulator. The dataset contains over 100
hours of ego-centric video taken from the humanoid 1X
robot. The humanoid robot executed various tasks such
as folding a cloth, navigating a floor, and picking and
placing various household objects.

Implementation Details. We build on top of
the masked video transformer fine-tuned by the 1xgpt
team [15]. An open-source implementation of the
MAGVIT2 tokenizer is used to compress RGB im-
ages from 256×256×3 into latent embeddings of shape
16×16×256. We use the factorized version of the tok-
enizer with a total vocabulary of size 218. We train the
transformer model in the quantized latent space of the
tokenizer using a cross-entropy objective to match the
predicted tokens with the masked ground truth tokens.
We do not condition the video simulator on the action
tokens.

Our transformer architecture uses 32 spatial-temporal
attention layers as described in Genie. We replace feed-
forward layers in all 32 layers with our sparsely gated
MoE layers. We use four experts with k set to 2. Each
expert processes 256-dimensional embeddings with a
multi-layer perceptron, using 1024 hidden units and a
GELU activation function. We train for 100k training it-
erations using the Adam [30] optimizer, a learning rate
of 1e−5, and a batch size of 12. We utilize the same
masking scheme and image sampling scheme described
in Mask-GiT, but sample images in two computational
steps instead of twelve.
Metrics. After fine-tuning the model on our training

dataset, we evaluate performance on a separate evalu-
ation dataset. We use two metrics to evaluate perfor-
mance: cross entropy loss and Learned Perceptual Im-
age Patch Similarity (LPIPS) [31]. We evaluate cross-
entropy loss between the predicted visual tokens and
the ground truth visual tokens. LPIPS is a metric used
to measure the perceptual similarity between two im-
ages. LPIPS is computed using the ℓ2 distance between
the deep feature representations (we use AlexNet rep-
resentations) of the predicted and ground truth images.
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Figure 1: Sample frames generated after MoE fine-
tuning model.

Rather than comparing raw pixel representations, LPIPS
leverages deep features to assess similarity in ways that
better correlate with qualitative and human perceptual
quality.
Results. We show some qualitative results of gen-

erated frames in Figure 1. Table 1 shows that the MoE
fine-tuning proposed in this paper improves both cross-
entropy loss (0.07) and LPIPS score (0.007).

Metric Pre-trained model MoE fine-tuning
Cross entropy loss 9.2123 9.1412
LPIPS 0.2246 0.2174

Table 1: Comparison of cross-entropy loss and LPIPS
with just the fine-tuned model and with the MoE fine-
tuning suggested in this paper. Both metrics show im-
provement.

6 Conclusion
In this paper, we explored the application of Mixture
of Experts to fine-tune masked video transformers. We
concluded that replacing the feedforward layers of the
transformer with Mixture of Expert layers improves the
performance of the pre-trained video transformer. We
also introduced a weight initialization scheme to help
improve training convergence.
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