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Abstract
Food intake monitoring is a crucial area of research
in food computing due to its complexity and sig-
nificant potential for improving health outcomes.
While traditional 2D image-based dietary assess-
ments provide basic information, video offers a more
detailed understanding of both the quantity of food
consumed and the manner in which it is eaten. How-
ever, current video-based dietary analysis remains
limited to coarse metrics, such as counting bites.
In this paper, we introduce FoodVideoQA, a novel
approach that leverages Vision-Language Models
(VLMs) to analyze food intake videos comprehen-
sively. Our framework includes lists of ingredients,
utensils, consumed foods, and specific time intervals
in a video where a person is eating. This work paves
the way for more advanced multimodal food intake
measurement and behavioral studies.

1 Introduction

In the world of healthcare, monitoring food intake is
pivotal in forming dietary routines, especially for sensi-
tive populations such as children and the elderly [1, 2].
Tracking dietary intake has been proven to prevent dis-
orders such as malnutrition, diabetes, and cognitive de-
cline for elderly people in nursing homes and assisted
living [3, 4]. In nurseries, food tracking facilitates shap-
ing healthy dietary habits at a young age, while pre-
venting long-term conditions such as obesity [5]. Such
applications require the identification of food items be-
ing consumed, a thorough nutritional breakdown, and
an analysis of their ingredients.
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To tackle the problem of dietary monitoring, many
model architectures have been proposed, requiring ex-
tensive training or fine-tuning existing models [6, 7, 8,
9]. This approach is inflexible and is susceptible to do-
main changes. For example, if a model has been trained
to count the number of bites of food taken, a task re-
quiring the amount of time for which the food was eaten
would require starting from scratch altogether. An addi-
tional downside of this approach is that it requires train-
ing data to be assembled that captures the various ways
a person can eat. This is inherently limiting, as there
are countless ways a person can eat, such as by food or
by utensil. Since it is not practically feasible to incor-
porate every possible combination of food and utensils
into a dataset, the training data is hence limited to a fi-
nite number of food and utensils [6, 7, 8, 9]. As a result,
a model likely would not understand a person eating in
real-world in cases where the food and utensil combina-
tion is not covered by the training data. These models
are overly specialized to their training data, thus limit-
ing their ability to perform well on real-world data.

Many previous approaches to dietary monitoring in-
volve the use of wearable devices [10, 11]. The weak-
ness of this approach is that it requires users to consis-
tently wear these devices. Using Vision-Language Mod-
els (VLMs) allows us to automate inferences from video
input and does not require deliberate action on the part
of the user in their day-to-day lives.

To address these shortcomings, we build our method
on Vision-Language Models, which can help perform
food analysis with minimal training. Using founda-
tional VLMs helps address this problem of generaliza-
tion. An additional upside of this approach is that fewer
resources are needed as expensive GPU training is not
necessary.

Existing VideoQA methods struggle with real-world
content since the datasets they use to train on are mainly
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focused on shorter videos, typically under a minute. As
such, VLMs have difficulty with memory requirements
of time-based coherence over extended video sequences
[12]. This is why we split videos into frames and focus
on analyzing consecutive frames, rather than process-
ing the entire video directly. This enables us to iden-
tify both the appearance and disappearance of individ-
ual food articles, while incorporating temporal context
into our VLM-based analysis [13, 14].

Building on our VLM analysis, another important ele-
ment we take into consideration is the subject’s actions
in the video – particularly, what they do with the food.
The mere presence or absence of a food item in a sin-
gle frame does not indicate its consumption. For exam-
ple, a food item might temporarily disappear in a frame
due to occlusion: such as lifting a spoon of soup to the
mouth, where the food may momentarily be blocked by
the hand or utensil. To address this, we incorporate
mouth detection and food localization using pose esti-
mation to better capture eating actions [15].

In this study, we present a framework that combines
VLMs and Pose Estimation for a detailed assessment of a
subject’s food intake in videos. VLMs provide contextual
descriptions of visible food items, their corresponding
ingredients, and utensils. DWPose [15] tracks the sub-
ject’s mouth landmarks, and GroundingDINO [16, 17]
draws food bounding boxes – which helps us detect eat-
ing actions by measuring mouth openness and calcu-
lating the proximity of the nearest food item. Our ex-
periments validate this framework’s ability to label each
frame as ”eating” vs. ”not eating”, and identify the food
item being consumed in the frame – with all labeled
frames compiled into a final video with intervals. Our
approach offers a scalable solution for dietary behavioral
analysis.

2 Methods

Our approach makes use of Vision-Language Models
(VLMs) and pose estimation to analyze food intake video
data. We first use VLMs to identify nutritional content,
ingredients, and utensils in each frame of the video to
give us contextual information about visible food items.

Then, to detect whether a subject is actively eating,
we leverage pose estimation. We focus on the subject’s
mouth positioning and openness while localizing food
items near the mouth. This workflow combining VLM
insights in and pose estimation in Figure 1 gives us a
thorough assessment of eating behavior.

2.1 VLM-Driven Insights
We start by employing a VLM to extract information on
nutritional values, ingredients, and utensils from each
frame of a video. After parsing VLM outputs for each
frame, we identify intervals of ”consistent” eating be-
havior by grouping consecutive frames where the same
food item is present. This ensures that our analysis oc-
curs over short frame sequences rather than haphazard,
isolated frames. Our approach aims to balance efficiency
with high performance, and the overall workflow is de-
picted in Figure 1.

2.1.1 Individual Frame Analysis

Analyzing every single frame in a video for insights is
inefficient and redundant. As frames separated by small
timeframes will have minimal differences between them,
it makes sense to pick frames that are reasonably spread
out in time to observe significant changes. Frames are
sampled from the video at regular intervals, τ , which
represents the number of frames to skip between sam-
ples to extract. The value of τ is showcased in Table 1.

We use VLMs to generate insights for each image, by
passing in a series of associated prompts. Our prompts
elicit detailed descriptions of nutritional information –
including food type, ingredients, utensils, and nutrient
composition, showcased in Figure 2.

2.1.2 Interval Generation

To track food consumption over time, we analyze de-
scriptions generated by the VLM for pairs of adjacent
frames. Specifically, we parse the VLM outputs to iso-
late food items present in each frame and store them as
an associated list with the frame. Next, we implement
an interval-detection algorithm to identify consecutive
frames that contain the same food item and mark the
start and end of the interval. This allows us to quan-
tify the appearance and disappearance of food items and
provides a more detailed assessment of food intake on
the frame level.

We also use a frame tolerance threshold, ϵ, to han-
dle brief absences of a food item between frames. The
value of ϵ is a hyperparameter detailed in Table 1. This
added measure allows us to distinguish between actual
changes in food consumption versus minor fluctuations
in the VLM outputs. It helps our framework account for
brief detection lapses, like occasion or brief misdetec-
tions, without mistakenly concluding that a food item
has been removed.

By integrating this tolerance, our interval-detection
algorithm more accurately represents continuous or
intermittent consumption across consecutive frames.
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Figure 1: FoodVideoQA workflow diagram combining VLMs and Pose Estimation for food intake assessment given
a video input. Video is processed frame-by-frame, VLM identifies visible food, ingredients, utensils, food weight, and
nutrient information; interval-detection algorithm 1 analyzes adjacent frames to identify food items consumed in frame
intervals; and Mouth detection and Food Localization via Pose Estimation determines whether the subject is eating.

Note: The pseudocode for Algorithm 1 showcases a
naive implementation of the interval-generation algo-
rithm, without the frame tolerance.

Algorithm 1 Interval Generation using VLM Output
Require: food data: List of detected food items per

frame
1: Initialize an empty list intervals
2: Set the starting frame index curr idx to 0
3: while there are frames left in food data do
4: Skip frames with no detected food items
5: For each food item in the current frame:
• Identify the next frame where this item reap-

pears.
• Record intervals only if they span at least two

consecutive frames.
• Store each valid interval along with its length.

6: Sort potential intervals by length, prioritizing
longer intervals

7: Select the longest interval for each detected item
in this frame and add it to intervals

8: Advance curr idx to the end of the selected in-
terval to avoid overlapping intervals

9: end while
10: return List of intervals representing consistent eat-

ing periods for each food item. =0

2.1.3 Quantitative Validation

To measure the semantic accuracy of the VLM’s output
against our ground truth for ingredients and utensils,
a simple word-to-word comparison is insufficient. Due
to the variability of VLMs, there can be slight differ-
ences in interpretation between the VLM’s output and
the ground truth.

Specifically, semantic variation and visual similarity
cannot be captured by one-to-one matching. For ex-
ample, ”cilantro” and ”coriander” are two distinct words
that mean the same herb, illustrating how language can
vary while representing the same item. Visual similarity
refers to the idea that two different objects can appear
alike and may be easily mistaken for one another, such
as an orange and a grapefruit. Although the VLM is not
technically wrong in these cases, one-to-one matching
would not recognize the semantic similarity.

To address this issue, we seek a method to quantify
the semantic accuracy of the ingredient and utensil lists
identified by the VLM. We adopt the BERTScore metric
proposed by Zhang et al. [18] as a solution. This method
provides a revised F1 score that is adjusted for the con-
text of semantic matching. We use the bert-score Python
package that implements the paper for this purpose.

During our experimentation, we found notable differ-
ences between the performance of one-to-word match-
ing in comparison to semantic matching. Using Scikit-
learn [19], we found that the average F1 score for one-to-
one word matching was 0.31 in comparison to 0.78 for
semantic matching, in a test run over 100 sample lists.
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As an illustrative example, consider the following sce-
nario:

VLM-generated List:
[’pasta’, ’meatballs’, ’tomato sauce’, ’parmesan’]

Ground Truth List:
[’spaghetti’, ’meatball’, ’marinara’, ’cheese’]

F1 Score (One-to-One Matching): 0.25
F1 Score (Semantic Matching): 0.65

One-to-one matching seems to only match exact
terms, such as ”meatball” and ”meatballs”. Whereas, Se-
mantic matching via BERTScore performs more effec-
tively by recognizing the semantic similarity between
words in both lists. For example, parmesan is a type of
cheese; spaghetti and pasta are similar items; and mari-
nara resembles tomato sauce.

2.2 Pose Estimation
The second component of our video analysis framework
is centered around pose estimation. We identified hu-
man pose as crucial information to be extracted for de-
termining whether or not a person is consuming food
in a single frame. This validation involves two separate
conditions. The first condition checks whether the per-
son’s mouth is open, and the second condition verifies
if there is a food item located near the person’s mouth.
A person is considered to be eating in a given frame if
both conditions are met.

2.2.1 Tracking Lip Landmarks

While the process of checking if a person’s mouth is
open could be achieved through a neural network, we
propose a simpler heuristic that leverages the DWPose
[15] library to generate facial landmarks for this pur-
pose.

DWPose generates facial and lip landmarks that allow
us to determine mouth openness, shown in Figure 3. We
analyze these landmarks to decide if the mouth is open,
by defining ”openness” based on the average distance
between the upper and lower lip keypoints. In partic-
ular, we define the mouth to be open if and only if the
average distance between the two lips is greater than the
lip separation threshold β, whose value is showcased in
Table 1.

Let t⃗ represent the points y-coordinates of the top of
the lip and b⃗ represent the points representing the y-
coordinates of the bottom of the lip. We average the
distance across 3 corresponding points in the top and
bottom of the lip.

Defining a boolean variable ξ to be 1 when a person is
eating, and 0 when they are not, we check that this aver-
age distance is greater than or equal to a lip separation.

Figure 2:
Sample frame fed into
VLM, along with asso-
ciated prompts and re-
sponses as shown in be-
low listing.

prompt: Identify only the food items visible in the
image. Provide a comma-separated list of food items
with no additional descriptions or details. Do not
repeat any items in your response.
answer: chicken, fried chicken, chicken wings

prompt: Provide a list of cutlery/utensils that the
person in the image is eating with, from this list:
[spoon, fork, knife, chopstick, spork, ladle, tongs,
spatula, straw, bowl, cup, glass]. Only provide a
comma-separated list of items with no additional
descriptions for each item in your response.
answer: cup

prompt: Provide a detailed list of the ingredients
of the food in the image. Only include a
comma-separated list of items with no additional
descriptions for each item in your response.
answer: chicken, breading, seasoning

prompt: Provide nutritional value about the food
you see in the image in bullet point format with
JUST this information and nothing else:
- Calories = ?
- Fats = ?%
- Protein = ?%
- Carbohydrates = ?%
answer:
- Calories: 1200
- Fats: 50%
- Protein: 20%
- Carbohydrates: 30%

The evaluation corresponds to the following:

ξ =

1
(∑3

i=1(ti−bi)

3

)
≥ β

0 otherwise
(1)

2.2.2 Food Localization

Knowing if a person’s mouth is open is not sufficient in-
formation to indicate eating – food must also be near the
mouth. An open mouth could simply indicate someone
is speaking, so the key factor is the proximity of food to
the mouth. Assessing this condition is the focus of food
localization.

First, we need to identify the locations of a per-
son’s mouth as well as food items, in a given frame.
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Figure 3: A face plot drawn using Matplotlib [20], out-
lining mouth in blue, top of lip in red, bottom in green.

We accomplish this via localization, using the Ground-
ingDINO model [16, 17] to generate relevant bounding
boxes for the text labels ”food”. We capture mouth de-
tails via DWPose – by extracting lip landmarks, and then
drawing a bounding box around the mouth. Using DW-
Pose helps ensure that we still detect the mouth even if
partially occluded, for example, by food like corn on the
cob.

Tightening the condition on the presence of food, we
further require the food to be close to the mouth. An ex-
ample is showcased in Figure 4. This closeness is quan-
tified by the intersection-over-union (IoU) of food bound-
ing boxes with the bounding box covering a person’s
mouth. A food item is defined as ”in range” of the mouth
if it meets an IoU threshold, δ:

F ∩M

F ∪M
≥ δ (2)

where F and M represent the bounding boxes for the
food and mouth in R2. The value of the hyperparameter
δ is showcased in Table 1. When multiple food bound-
ing boxes are detected, the closest one to the person’s
mouth is selected for testing against the threshold. If no
food bounding boxes are identified, the condition will
automatically fail.

3 Experimental Results

Table 1: Hyperparameters Used in Experiments

Hyperparameter Symbol Value

Frame Step Size τ 20 frames
Frame Tolerance Threshold ϵ 15 frames
Lip Separation Threshold β 8.0
IoU Threshold δ 0.15

We first collected a dataset of 10 videos that contain
people from different demographics, eating a wide va-
riety of food items. Each video contains approximately
100 consecutive frames, each manually labeled by us and

Mouth open: True — IoU: True — Eating: True

Mouth open: True — IoU: False — Eating: False

Figure 4: A comparison of eating vs. not eating states
based on our pose estimation framework.

extracted based on our frame step size τ detailed in Ta-
ble 1. We’ve also included videos of people with no food
present in the video to ensure diversity in our dataset.
We name our dataset NutriQuest. The dataset and our
approach can be found on this GitHub repository.

Table 2: Comparison of VLM Performance

Model Name F1BERT PBERT RBERT

LLaVA-v1.6-7b 0.66 0.60 0.71
LLaVA-v1.5-7b 0.36 0.33 0.38
Blip-2 (LAVIS) 0.29 0.23 0.36

The selection of LLaVA as the VLM to solve our prob-
lem was based on its superior performance in compar-
ison to VLMs showcased in Table 2. We tested LLaVA
on our NutriQuest dataset with BERTScore (F1BERT )
as our metric, and we found that LLaVA consistently
demonstrates a high BERTScore. Note that BERTScore
assigns a default score of 0.0 to any instance where a list
is empty, be it VLM-generated, or ground-truth. To ac-
count for this discrepancy, we assign a score of 1.0 to
the case where both lists are empty. Table 2 presents the
average score across all evaluated frames, where a high
score indicates better performance.

We applied our Pose Estimation algorithm to the Nu-
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Table 3: Pose Estimation Accuracy

Method Accuracy

Combined 0.87
Food Localization (IoU) 0.81
Facial Landmarks (Mouth Open) 0.67

triQuest dataset and conducted ablation studies to eval-
uate the contribution of each component. Table 3 show-
cases the accuracy of our Pose Estimation algorithm on
the NutriQuest dataset – where we tested the food lo-
calization and facial landmark detection separately, and
then evaluated the combined approach. We see that a
higher accuracy is achieved by our algorithm that com-
bines both detection and localization.

4 Conclusion

In our paper, we brought to light an automated approach
to nutritional tracking with minimal training. We elab-
orated on FoodVideoQA, a two-stage process combin-
ing VLM-based semantic insights with pose estimation
to estimate the quantity of food consumed by a person
in a video. We showcased our tool’s performance on a
dataset of 10 videos, annotated with ground truth food
items. FoodVideoQA is the initial step toward more ad-
vanced multimodal food intake measurements and other
nutrition-tracking-related fields.
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