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Abstract
The advent of deep learning tools has signifi-
cantly enhanced researchers’ capabilities in analyz-
ing spatio-temporal data. This type of data analysis
holds relevance across various domains.
Improving the ability to identify and cluster pat-
terns within sporting events has profound implica-
tions. It can aid in automatic highlight detection
and is especially beneficial for coaching, particularly
in underfunded and minor leagues. While the in-
sights presented in this paper can be applied to nu-
merous team sports, our focus primarily lies on ice
hockey. In this paper, we make three significant con-
tributions: we introduce a simple, parametrized ice
hockey formation dataset generator facilitating the
development and benchmarking of baseline mod-
els; we investigate the impact of noise from the
dataset on the accuracy of event classification; and
we compare the accuracies of three models: K-
Nearest-Neighbors, Graph Networks, and Convolu-
tional Neural Networks.

Introduction

The field of sports analytics leverages statistical, com-
putation and data-driven techniques to gain insights
into various aspects of sports performance, strategy and
management. For example, we can study a particular
pass in ice hockey sequence and players’ formation in
an offensive zone and use statistical methods to infer
the probability of it resulting in a goal. To do so, it is
important that we are able to detect those players’ for-
mation/sequence so that we acquire enough data about
their output. Amassing enough samples about an event
can be challenging and thus the purpose of this paper.
The overarching goal of this research is to create a syn-

∗website: https://botengu.github.io/portfolio/

thetic dataset on which models will be trained to detect
ice hockey power plays from the players’ tracklets. A
power play in ice hockey occurs when one team has a
numerical advantage due to an opposing player being
penalized and sent to the penalty box. The purpose of a
power play is to create a temporary imbalance, offering
the advantaged team an opportunity to exert offensive
pressure and score goals. The disadvantaged team, play-
ing ”short-handed,” focuses on defense and preventing
goals. Detecting such events during footage analysis can
enable teams to study their opponents, focusing on the
frequency and execution methods of power plays. There
are three forms of power plays which will be described
[1]:

• The umbrella power play: The umbrella formation
involves positioning three players high in the of-
fensive zone: one at the center point and two at
the tops of the faceoff circles, creating an ”um-
brella” shape. This setup emphasizes puck move-
ment along the perimeter and quick shots from
the point or top of the circles. It aims to stretch
the penalty killers horizontally and create shooting
lanes for players in the high slot or net-front areas
(see figure 1a).

• The 1-3-1 formation: The 1-3-1 is a dynamic and
modern power-play structure that balances players
across the offensive zone in a 1-3-1 alignment: one
player at the blue line (point), three players across
the middle (two wingers and a bumper), and one
player stationed in front of the net. This formation
offers versatility, allowing for quick puck move-
ment and multiple shooting threats. The bumper
player in the slot is crucial for redirecting shots,
creating screens, or making short passes to main-
tain puck possession (see figure 1b).

• The spread formation: The spread, or overload,
places an emphasis on puck control and creating
space by ”overloading” one side of the ice. Typi-
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cally, three players work in close proximity along
the boards or in the corner, with one player po-
sitioned in front of the net and another at the far
point. This setup relies on quick passes and strong
puck possession to confuse the penalty killers and
open up shooting opportunities (see figure 1c).

Creating a dataset would require scanning through
hours of ice hockey footage, detect and track players
who are about to be in a power play formation. Further-
more, the task would be made even greater since these
events are relatively rare and in existing footage, some
players are sometimes not in the field of view or par-
tially occludes. To the best of the authors’ knowledge,
no dedicated ”power play” dataset has been created to
train classifiers for their detection. Moreover, the au-
thors recognize that player locations during power plays
tends to exhibit relatively small variations. Therefore,
creating a dataset that simulates player trajectories with
a bit of noise would be highly beneficial for training cus-
tom models (as it has been done in other sports [2, 3]).
These models would learn to recognize power plays de-
spite randomness in trajectories and positional differ-
ences, which make them more realistic. Once trained,
such models could be used to classify tracked players in
ice hockey footage effectively. Thus further helping in
coaching and/or extracting highlights.

The paper makes three significant contributions:

• It introduces a parametrized elementary dataset
generator tailored for the study of ice hockey for-
mations.

• It examines the influence of noise from the dataset
on the accuracy of event classification.

• It evaluates the effectiveness of three baseline mod-
els: K-Nearest-Neighbors (KNNs), Graph Neural
Networks (GNNs), and Convolutional Neural Net-
works (CNNs).

Section will delve into similar works, section will
discuss the intricacies of the models which have been
used in order to evaluate the datasets and section will
discuss the results.

Related works
This research lies at the intersection of two fields: Multi-
agent systems and spatio-temporal event recognition.

Event recognition is centered around identifying and
understanding human activities or events from video or
sensor data. It involves analyzing data to discern pat-
terns and sequences that indicate specific events or ac-
tions. On the other hand, multi-agent systems (MAS)

delve into the interactions among autonomous agents,
exploring how these interactions can be modeled and
predicted. This field seeks to understand individual and
collective agent behaviors, often encompassing complex
decision-making processes.

In the realm of sports, there are compelling reasons to
gather and to study spatio-temporal data. The literature
highlights various motivations to do so:

• Spatio-temporal data in sports is utilized to predict
the outcomes of events or games [4, 5, 6, 7, 8, 9, 10,
11].

• Spatio-temporal data in sports is also employed
to study relationships between sport variables [12,
13].

• Spatio-temporal data is also used to establish suc-
cess metrics [14, 15, 16, 17, 15].

• Furthermore, spatio-temporal data can be used to
generate optimal strategies [18, 19].

• Lastly, spatio-temporal data is employed for the
analysis and detection of patterns [20, 21, 22, 23,
24, 25, 26, 27].

Those reasons are all further motivation for us to
be able to properly train models to detect events (ice
hockey power play formation). The next section will dis-
cuss the methodology used to generate and evaluate the
datasets.

Methods

Dataset generation
The dataset generation process involves defining three
player configurations: the umbrella power play, 1-3-1
power play, and spread power play. These formations
are represented through player locations on the ice. We
chose these formations because they are the most fre-
quent and sufficiently distinct, making it possible to cre-
ate a dataset with well-separated classes that increase
the likelihood of the classifier accurately distinguishing
between them.

Those locations are encoded using the formula :

Pconf = {(Px,i, Py,i)|i = 1, . . . , 5} (1)

where (Px,i, Py,i) are the specific coordinates for player
i.

Noise is then added to the players’ locations using X ,
a 5× 2 random array. The noise is bounded by pm, our
first parameter, which represents a fraction of the rink:
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(a) umbrella

(b) 1-3-1

(c) spread

Figure 1: The umbrella, the 1-3-1, and the spread
power plays. The green dots represent the ideal loca-
tions of the players, all located in the offensive zone.
Only half of the rink is shown.

X ∼Uniform(0, 1)5×2 (2)

P̃conf = max(0,min(Pconf +X · pm, 1)) (3)

Where P̃conf is the modified (noisy) configuration.
We clip the array to ensure that the locations are within
the rink’s dimensions.

To generate the trajectories around the players, we
create an imaginary rectangle (of dimensions w and h)
in to limit the extent of the players’ trajectories. We ap-
ply Bezier curve and generate two curves, one being the
first half of the trajectory and the other one being the
second half of the trajectory. Equation shows the com-
putation for the first trajectory (2) configurations of fig-
ure 2.

(a) Trajectory configuration 1.

(b) Trajectory configuration 2.

Figure 2: The two trajectory configurations. Control
points are in purple, and the resulting Bézier curves are
the dashed red lines.
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Trajpts = concat(B1(tk), B2(tk)) (9)

Where P1ctl and P2ctl are the control points for both
sides of the trajectories. B1(tk) and B2(tk) are bezier
curve points for both sides of the trajectories. The con-
catenation of both elements yields Trajpts, the final
curve points. Each trajectory is then rotated by a ran-
dom angle that varies between 0 and 2π.
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Architectures of the Models
We initially considered using rules based on location
margins from the players’ positions to recognize power
plays—for example, determining whether the players’
positions fall within a specific threshold and applying
deductive logic to infer the power play. However, this
methodology is less effective when accounting for the
type of noise present. The critical factor goes beyond
the absolute or relative positions of the players. As the

names of some power plays suggest, the players can be
viewed as forming a shape, which may be compressed
or stretched along various axes (as long as certain rules
are respected, e.g., all players remain in the offensive
zone). This transforms the problem into one resembling
shape classification, for which machine learning pro-
vides more effective tools. Machine learning models,
particularly those designed for spatiotemporal data such
as trajectories, are better equipped to handle noise. They
can generalize patterns and ignore irrelevant variations
caused by noise, outperforming rule-based methods in
these scenarios.

Three machine learning models were used to classify
the data:

• K-nearest neighbours: KNNs were used to compare
the performance of our models. We set the number
of neighbours to 5.

• Convolutional Neural Network: For this network,
we treated our data as a grayscale image. Instead of
two spatial dimensions, we have one spatial dimen-
sion and one temporal dimension. CNNs were cho-
sen for their ability to effectively take neighboring
features into account when handling 2D data struc-
tures. The output of CNN layer H(l+1) is given by:

H(l+1) = σ
(
W (l) ∗H(l) + b(l)

)
(10)

Where H(l) is the input feature map at layer l, W (l)

represents the convolutional filter or weight matrix
for layer l, ∗ denotes the convolution operation, b(l)
is the bias term applied at layer l, σ is the activation
function, in this case, ReLU, H(l+1) is the resulting
feature map after the convolution operation and ac-
tivation function are applied.

• Graph Neural Network: The network consisted of
two graph convolutional layers that involved mes-
sage passing. An edge was created between each
pair of points. The output of GCN layer is given by
H(l):

H(l+1) = σ
(
ÂH(l)W (l)

)
(11)

Where: X is the input feature matrix, Â is the nor-
malized adjacency matrix of the graph, W (l) is the
weight matrix for the previous GCN layer, σ is an
activation function (ReLU in this case), H(l) is the
output of the previous GCN layer.

The experimental setup involved creating five
datasets by varying the positional margin (pm) from
0.0 to 0.4 with 0.1 increments. For each dataset, 2000
samples were generated for four classes, and player
trajectories were represented by 40 points (n=20). The
data was processed by stacking the x and y coordinates
into a vector of 80 values per player.

Results

Figure 3: Plots showing the accuracies of all three mod-
els across the various datasets

For the KNN, we used a fixed k of 5. For the experi-
ments utilizing both GNN and CNN models, the data was
split 80-20% into a training set and a test set, with the
training set itself further divided into a 75-25% split for
training and validation. We performed cross-validation
on the training and validation sets and evaluated the
best model on the test set after cross-validation was
completed. We used Xavier weight initialization and an
Adam optimizer. Each fold ran for 5 epochs with a learn-
ing rate of 0.01 and a weight decay of 10−5. Results are
shown in figure 3

For pm = 0.00, GNN and KNN both achieved 100% ac-
curacy, indicating their ability to classify perfectly when
there were no positional variations in the dataset. CNN
performed significantly worse, suggesting it struggled
to generalize even without noise. The T-SNE visualiza-
tion in figure 4a showed that all the power plays were
clearly clustered.

For pm = 0.01 to pm = 0.04, the accuracy dropped
substantially compared to pm = 0.00 for all models,
highlighting the increased difficulty of classification as
positional margins introduced variability. KNN consis-
tently outperformed the other models, while CNN and
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(a) pm = 0

(b) pm = 0.04

Figure 4: Visualization of the dataset T-SNE embed-
dings. (a) Embeddings for pm = 0. (b) Embeddings for
pm = 0.04.

GNN performed similarly. The T-SNE visualization for
pm = 0.04 (figure 4b) showed that there were no clear
clusters anymore.

Conclusion
In summary, this work has achieved several objectives.
First, it generated synthetic ice hockey power play se-
quences with parametrizable temporal and spatial fea-
tures. Second, it demonstrated their compatibility with
existing networks, suggesting they serve as a solid foun-
dation for future baselines. And third it compared the
classification accuracies from the different baselines.

However, further work is needed to enhance these re-
sults. Adding more variations to the dataset might en-
sure more conclusive findings. The simulation should
also better represent actual hockey sequences. For in-
stance, incorporating greater complexity into player
paths to produce more realistic trajectories based on
real-life data. Introducing a binary feature indicating
which player possesses the puck, and adding player roles
(forward vs. defender) will be beneficial. Additionally,
enabling the scaling of formation shapes should be ex-
plored to diversify the data. Moreover, we plan to in-
crease the number of parameters in the deep learning

networks to improve the classification accuracies.
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