
DIPLOMAT: A tool for multi-animal tracking

Isaac Robinson1, George Glidden1, Neekesh Panchal2, Nathan Insel2, Travis Wheeler1

1R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ
2Department of Psychology, Wilfrid Laurier University, Waterloo, ON

Abstract
Recent advances in computer vision have enabled
the development of automated animal behavior ob-
servation tools. Despite their generally encourag-
ing performance, multi-animal tracking tools still
face challenges, particularly with “body swapping”
– failure to maintain identities across time. Here we
present DIPLOMAT, multi-animal tracking software
tool that greatly reduces identity assignment errors
by introducing a combination of (i) an automated
pose estimate post-processing algorithm (“Track”)
and (ii) an graphical interface for efficient human su-
pervision (“Interact”). Evaluation involving record-
ings of multiple moving mice shows that DIPLO-
MAT’s automated method yields reductions in iden-
tity swaps of 80 to 95% relative to leading methods,
and that these can then be almost entirely eliminated
with time-efficient human editing.

1 Introduction

Recent technological developments, including advances
in computer vision, have paved the way for objective
measurement of high-dimensional, complex behavior.
This is particularly valuable for studies of social inter-
action, which are by nature complex, variable, and de-
pendent on naturalistic contexts. Relevant social infor-
mation can often be signaled through subtle, moment-
to-moment movements of specific muscles, such as fa-
cial expressions or posture. To understand the nature of
social interaction, it is therefore necessary to use mea-
sures that take into account nuanced pose and move-
ment changes. This can be accomplished by tracking
body parts in two or more individuals over time, but
only works if the tracking methods are consistent about
which individual the body parts belong to.
Several tools for multi-animal tracking have recently

become available, including SLEAP [1], multi-animal
DeepLabCut [2], AlphaTracker [3], ID tracker [4], and

TRex [5]. Two of these, DLC and SLEAP, have caught-
on as particularly popular and powerful for tracking
dyads and triads of rodents using a single-camera video
source (Shemesh and Chen, 2023; Luxem et al., 2023;
Bordes et al., 2023). Both apply convolutional neural
networks to detect animal body parts, paired with dif-
fering algorithms to then assign animal identities (gen-
erally based on associations between the body parts,
“skeletons”). Despite their generally encouraging per-
formance, multi-animal tracking tools still face chal-
lenges, particularly with “body swapping” – failure to
maintain identities across time when presented with
similar-looking, sometimes-overlapping bodies.
To overcome these body-swapping challenges, we

have developed DIPLOMAT, a Deep learning-based,
Identity-Preserving, Labeled-Object Multi-Animal
Tracker. DIPLOMAT introduces automated algorithms
(“Track”) and an efficient human interface (“Interact”)
to jointly eliminate identity assignment errors.
Tracking in DIPLOMAT begins by running either

SLEAP or DeepLabCut to produce frame-by-frame dis-
tributions of the probabilities of possible locations for
body parts. It then treats the movement of each individ-
ual as a Markov process, identifying a maximum prob-
ability (Viterbi) trace for each individual’s body parts
based on a custom hidden Markov model. Tracking ac-
curacy is improved by application of skeletal constraints
(which enforce body part proximity), along with a novel
signal dampening strategy for ensuring mutually inde-
pendent traces (see Methods). Efficient parallel com-
putation ensures that run time for DIPLOMAT’s Track
stage is less than that of the initial pose estimation stages
of DeepLabCut or SLEAP.
Following automated tracking, a researcher may use

DIPLOMAT’s Interact tool to identify potential errors,
then correct those errors with a simple point-and-click
error interface that enables rapid correction of multiple
body parts at a time; a small number of user edits are
smoothly integrated with automated algorithms for re-
tracking.
Testing against stand-aloneDeepLabCut or SLEAP re-
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veals that DIPLOMAT’s automatedmethod alone results
in statistically-confirmed reductions in identity swaps of
80 to 95%, and that these can then be eliminated with
time-efficient human editing. DIPLOMAT therefore has
the potential to streamline analysis of multi-animal in-
teraction, and can be used on its own or as a complement
to other methods to improve multi-animal tracking ac-
curacy and workstream efficiency. By design, DIPLO-
MAT is agnostic to the source of body part maps, and
can be easily extended to wrap other pose estimation
tools that may appear in the future.

2 Methods
DIPLOMAT is developed as two major components. The
first component, Track, uses either SLEAP or DeepLab-
Cut to produce body part location heatmaps for each
video frame (CNN-based probabilities that each pixel
in the frame is the location of each kind of body part),
then traces all animals through the full video by iden-
tifying mutually-exclusive maximum probability traces
through those heatmaps. The second component, Inter-
act, is a smooth and intuitive user interface for quick
editing of multiple body parts across video frames, with
the ability to re-integrate these edits to a quickly and
smoothly re-track body parts and, when necessary, re-
assign identities.
The methods underlying DIPLOMAT are guided by 4

assumptions:

1. Bodies don’t teleport. This means that a previ-
ous video frame can be used as a prior that informs
probability distributions for current body part lo-
cations.

2. Body parts stick together. Skeletal information
(distance between body parts) can further inform a
posterior probability of body part location.

3. Bodies will be easier to distinguish in some
frames over others. Some frames can serve as an
anchor, with probabilities extending forward and
backward from that point.

4. Fixed body count. In a given experiment, there is
typically a pre-set number of bodies.

Although not all of these assumptions will be true for
every application, they cover a wide scope of animal be-
havior and neuroscience protocols.

2.1 Track
The workflow for the automated Track component is
presented in the top two boxes of Figure 1.

2.1.1 Train and apply the pose estimation model

DIPLOMAT’s Track stage depends on a per-frame pose
estimation heat map. This requires that the user se-
lect a pose estimation tool (currently choosing between
SLEAP and DeepLabCut), and use the model training
methods provided by that tool. This requires that the
user train a tool-specific model by labeling a modest
number of frames (typically 10-1000 frames). When
DIPLOMAT is run, the trained model is supplied along
with the tracking video, and the tool produces the req-
uisite per-frame heat map of body part placements for
each body part. Let B be the set of labeled body parts
(e.g. B = { nose, left ear, right ear, tail base}), and
F be the number of frames in a video recording with
N animals. Then for each frame i ∈ {1..F}, and each
body pat type b ∈ B, the pose estimation tool produces
a softmax-based pseudo-probability Pi,b(x, y) for each
position (x, y).

2.1.2 Identify an anchor frame.

For each frame, DIPLOMAT computes a measure of the
quality of separation of the animals in the frame. First, a
median distance is computed between each pair of body
parts (the skeleton), across all frames. Then for each
frame, an estimate is computed of the number of parts
that can be reliably paired with each other according to
those median distances. The frame with greatest sepa-
ration reliability is chosen as an “anchor” frame.

2.1.3 Compute a maximum probability trace

Computing a most-probable trace requires definition of
a probability model. In DIPLOMAT, the base form of
this model motivates a recurrence in which a probabil-
ity is computed that the true path for body part b for
individual k runs through position (x, y) in frame i:
Vi,b,k(x, y). This probability is computed as a product of
(i) the per-frame softmax-based pseudo-probability from
the base model, (ii) the probabilities of all possible paths
up to the preceding frame, and (iii) the probability T

of transitioning (moving) from position (x′, y′) in one
frame to position (x, y) in the next:

Vi,b,k(x, y) = max
x′,y′

(
Vi−1,b,k(x

′, y′)

· T (x′, y′, x, y)

· Pi,b(x, y)
) (1)

The transition probability T (x′, y′, x, y) is similar to a
Gaussian distribution with mean at (x′, y′) and standard
deviation based on the median body size, to discourage
unreasonably largemoves. Functionally, this path-based
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Figure 1: Flowchart illustrating the sequence of steps involved in multi-animal tracking using DIPLOMAT.
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approach means that instead of using simple probability
peaks, the algorithm identifies the points that optimize
movement through probability fields across frames.
The recurrence allows for a natural dynamic program-

ming tabular computation, such that the probabilities V
for each frame can be computed based only on infor-
mation from the previous frame. Because DIPLOMAT
begins the trace at an anchor frame that is generally nei-
ther the first nor last frame, the dynamic programming
implementation is performed in both directions from
the anchor, with no loss of generality. A naive imple-
mentation of this recurrence would suffer from extrav-
agant run time due to the large number of pairwise po-
sitions computed in the recurrence; DIPLOMAT avoids
this by computing on a sparse matrix, in which only
non-negligible input (P ) and trace (V ) probabilities are
retained and computed.

2.1.4 Skeletal constraints

. Body parts within an animal tend to maintain a par-
ticular distance, which can be used to update probabil-
ity estimates. DIPLOMAT accounts for these constraints
by developing an annulus distribution (see Figure 1, part
3.C) for the pairwise distances between all skeletal pairs,
then incorporating skeletal distances as an additional
factor of V ().

2.1.5 Mutually-independent traces

. When individual animals are co-located in a video for
an extended stretch of time, a naive implementation of
the above Viterbi algorithms can lead to identity col-
lapse, in which two or more individuals end up being
places on the same positions because thePi,b(x, y) dom-
inate all others. To counteract this, DIPLOMAT imple-
ments a mutually-independent trace (“MIT”) modifica-
tion to the basic maximum probability (Viterbi) trace.
After V () values have been computed for all body parts
and all individuals, a competition phase in performed:
for each position (x, y) and body part b, the individ-
ual k with greatest Vi,b,k(x, y) is identified and all other
Vi,b,·(x, y) (where · ̸= k) are set to zero. This is appro-
priate because all future paths leading from that position
will be dominated by individual k, and it forces other in-
dividuals to be assigned to other high-scoring positions.

2.1.6 Segmenting and stitching

. To improve memory usage and parallelize algorithm
execution, DIPLOMAT selects more than one single
anchor frame, by identifying relatively evenly-spaced
frames with high reliability of animal separation. The
video is broken into segments, with these anchors as

boundary points. The above Viterbi pass is computed
for each resulting segment, then a final processing
step stitches the segments together, using the anchored
frames to align animal identities across segments using
relative distances between body centers, according to
the Hungarian algorithm.

2.1.7 Occluded state

. The use of Viterbi and skeleton-based probabilities en-
sures that each body part has non-zero probability in
each frame. This separates the DIPLOMAT algorithm
from stand-alone CNN inferences, which show near-
zero probabilities when body parts are not identified,
such as during occlusion. DIPLOMAT treats these cases
of low CNN probability by allowing auxiliary “occluded
states”. This allows DIPLOMAT to continue tracking the
probable position of body parts even when the part can’t
be directly observed.

3 Results

To validate DIPLOMAT, we applied the software to
a publicly available, standardized dataset of “Mouse
triplet” videos (MABe3[6]). We compared performance
of only automated components of DeepLabCut (DLC)
and its DIPLOMAT extension, as well as SLEAP against
its own DIPLOMAT extension, and observed a signifi-
cant decrease in the number of identity swaps for the
sum of individual body parts (Wilcoxon sign-rank test:
DLC comparison: p = 0.0079; SLEAP comparison: p = 3.9
x 10-4) as well as mean body position (DLC: p = 0.015;
SLEAP: p = 0.0034). Results are summarized in Figure 2.

4

Additionally, DIPLOMAT decreased false negatives
(missing body parts) in body part detection, while some-
times increasing the number of false positives relative to
the human-curated gold standard (due to DIPLOMAT’s
handling of occlusion).

5 Discussion

DIPLOMAT substantially reduces body-swapping in au-
tomated multi-animal tracking, and provides a graph-
ical user tool to easily identify and cure errors in au-
tomated tracking. In ongoing work we are applying
DIPLOMAT to tracking dyads of rats as well as de-
gus for studies of rodent social neuroscience and be-
havior. The software is open-source, tested across op-
erating systems, and is currently available for down-
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Figure 2: Body-swaps across 54 “mouse triplet”
videos. Top panels are all swaps across 9 body parts,
bottom panels are mean position of body. Left: errors
in DLC (green) and SLEAP (blue) minus correspond-
ing DIPLOMAT errors. Right: distribution across all
videos, ordered by those with the most stand-alone DLC
or SLEAP errors. Errors in DIPLOMAT (open circles in
right panels) were statistically lower..

load at https://diplomattrack.org/, with a
manuscript pending.
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