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Abstract
Histological staining, particularly H&E staining, is
essential in pathology for visualizing tissue struc-
tures, but traditional methods are time-consuming.
Photon Absorption Remote Sensing (PARS), a high-
resolution microscopy technique, offers a promis-
ing alternative by capturing H&E-like contrasts di-
rectly, enabling virtual staining without the need for
chemical reagents. However, differentiating biologi-
cal structures remains challenging for current mod-
els. We propose that channel-specific feature extrac-
tion could enhance colorization accuracy. This study
investigates the effectiveness of modified K-means
algorithm and Principal Component Analysis (PCA)
for feature extraction in virtual staining. Results
reveal that features produced by the K-means ap-
proach more effectively isolate tissue-specific struc-
tures, leading to improved labeling compared to
PCA and conventional PARS channels. This advan-
tage is demonstrated both quantitatively, through
higher Structural Similarity Index (SSIM) scores, and
visually, with enhanced colorization outcomes.

1 Introduction

Histological staining is essential in pathology, enabling
the visualization of tissue structures for accurate diag-
nosis [1]. Among various techniques, Hematoxylin and
Eosin (H&E) staining is the gold standard for providing
high-contrast visualization of cell nuclei and extracellu-
lar components. However, conventional staining meth-
ods are time-consuming, requiring lengthy preparation
and staining processes that delay diagnostic turnaround
times [2, 3].

To streamline this process, researchers have pursued
virtual staining methods that work with images cap-
tured by advanced, high-resolution microscopes, offer-
ing faster processing by eliminating the need for chemi-
cal reagents. A notable innovation is Photon Absorption
Remote Sensing (PARS) [4, 5, 6, 7], a high-resolution,
label-free microscopy technique capable of generating
H&E-like images by directly capturing hematoxylin-
like (non-radiative) and eosin-like (radiative) contrasts,
which we refer to as conventional PARS channels. By
leveraging these intrinsic tissue contrasts, PARS enables
label-free imaging with high structural fidelity, facilitat-
ing the training of virtual staining models, which has
proven successful [6, 7].
Despite their promise, virtual staining methods using

models like Generative Adversarial Networks (GANs)
[8, 9, 10] face challenges in accurately differentiating
tissue types, often resulting in colorization errors. This
may stem from themodels’ limited ability to capture and
isolate distinct tissue features effectively during train-
ing, possibly due to a lack of explicit understanding of
underlying structures within the data.
To address these challenges, this study introduces

a novel approach that enhances the virtual staining
process by first separating biological structures based
on features produced by a modified K-means [11, 12]
and Principal Component Analysis (PCA) [13, 14] be-
fore model training. By improving the learning process
through these separation techniques, we aim to achieve
more precise tissue differentiation and thus colorization
in PARS images. This study builds upon the work pre-
sented in [7], with a focus on comparing two widely
recognized feature extraction techniques and examining
their effects on feature labeling and virtual staining.
PARS data inherently shows partial structural separa-

tion: non-radiative (NR) channels capture nuclei, while
radiative (R) channels highlight cytoplasm and connec-
tive tissues [5]. Previous studies [11, 12] have identified
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Figure 1: A visual comparison of colorization results us-
ing combined vs. separated grayscale H&E channels on
human skin tissue. (a) Inputs: combined and separated
grayscale H&E, with color H&E as ground truth. (b) Re-
sulting colorizations, showing improved accuracy with
separated inputs.

a relationship between PARS signals and specific struc-
tures, suggesting that enhanced labeling through chan-
nel separation could improve colorization accuracy.

To validate the potential of this approach, we con-
ducted a proof-of-concept study with color H&E im-
ages taken by a brightfield microscope. The objective
was to recolor these images with GAN models by pro-
viding inputs in the form of separated H&E channels.
Using Ruifrok’s method [15] with the sci-kit-image li-
brary [16], we isolated the hematoxylin and eosin chan-
nels, converted them to grayscale, and recombined them
into RGB images as inputs for the virtual staining GAN
model.

For comparison, we also used grayscale versions of
the color H&E images as a baseline input alongside the
separated channels to assess how different input for-
mats affect colorization. Results (Figure 1 (b)) show
that channel-separated inputs significantly enhance col-
orization accuracy, reducing blending between struc-
tures like nuclei and connective tissues. These findings
highlight that separating contrasts helps themodel learn
relationships between input and target domains, result-
ing in improved colorization outcomes.

2 Methodology

Building on these findings, our methodology utilizes
non-radiative time-domain (TD) signals from PARS to
investigate how feature extraction can enhance virtual
staining. These TD signals have the potential to convey
valuable multimodal information about the observed
targets. To capture this diversity, we selected modified
K-means and PCA due to their strengths in feature ex-
traction and differentiation, enabling us to isolate key
structural information for input into the staining model.
In combining feature channels, we recognize that in-

cluding all possible elements could introduce redun-
dancy and potentially reduce model effectiveness. To
address this, we later conduct a combinatorial analy-
sis of feature sets to identify the optimal subset of ex-
tracted features that maximizes colorization accuracy
and avoids overloading the model with repetitive infor-
mation.

2.1 Feature Extraction Approaches

2.1.1 Modified K-means

To capture tissue-specific information from non-
radiative TD signals, we applied a tailored version of
K-means (K∗-means) approach based on Pellegrino et
al. [12]. This method identifies clusters by analyzing
signal shape, and is both robust to noise and signal
inversion—critical for accurately labeling distinct
biological structures in virtual staining. Each TD signal
is treated as a vector in Rn, where n is the number of
samples per signal. The angle between vectors is used to
measure similarity, with orthogonal signals considered
maximally distant. Cluster centroids (i.e., the learned
features) are computed as the principal component of
each cluster and its negative, ensuring centroids are
resilient to noise.
After clustering, each TD signal is represented by a

weighted sum of K feature vectors, F = {f⃗i}, with
K chosen to balance structural detail and redundancy.
These feature vectors were then used to generate fea-
ture images, which highlight different tissue compo-
nents, such as nuclei and connective tissues. This ap-
proach yielded K feature images per sample, arranged
as channels for the virtual staining model. We selected
K based on visual clarity, testing values from 2 to 6 to
avoid redundant or indistinct clusters. For detailed in-
formation about the methodology, refer to [7].

2.1.2 Principal Component Analysis (PCA)

To complement K∗-means, we used PCA to reduce data
dimensionality while retaining major variance in the

2



Journal of Computational Vision and Imaging Systems 3

TD signals [12]. Unlike K∗-means, PCA doesn’t di-
rectly capture specific biological features but instead
highlights overall variance. Each TD signal was trans-
formed into a set of principal components (PCs), pre-
serving data variance in fewer dimensions while mini-
mizing information loss. This reduced-dimension repre-
sentation served as an alternative input for virtual stain-
ing, allowing themodel to leverage broad signal patterns
without focusing on specific signal shapes.
For a fair comparison, we varied the number of PCs

from 2 to 6 to match the range used in K∗-means. The
chosen PCs were arranged as multi-channel inputs for
the GAN model, similar to the K∗-means features, en-
abling the model to explore the impact of different data
representations on colorization accuracy.

2.2 Multi-Channel GAN (MC-GAN)
In this study, we apply CycleGAN [8], a variant of
GAN model [17], to translate label-free PARS images
(source domain) into virtually stained images that re-
semble H&E-stained samples (target domain).
The Multi-Channel GAN (MC-GAN), introduced in

[7], extends the CycleGAN framework by enabling
multi-channel input, allowing it to process data with
richer features. Traditional CycleGAN models typi-
cally handle single-channel (grayscale) or three-channel
(RGB) images [18, 8, 19]. Prior studies [6, 9, 10] replaced
RGB channels with NR and R channels, which proved
effective when using three or fewer channels. How-
ever, to enhance virtual staining, we leverage additional
structural information from PARS NR signals, requiring
amodel capable of handlingmore than three input chan-
nels.

MC-GAN accommodates this by expanding the allow-
able input channels to integrate multiple feature layers,
capturing a broader range of structural details during
training. Other than this channel expansion, the MC-
GAN architecture retains the core CycleGAN design [8].
This multi-channel capability enablesMC-GAN to lever-
age richer data, potentially improving colorization accu-
racy and overall model effectiveness.

2.3 Dataset and Training Settings
We used a human skin dataset collected by the research
team at the Photomedicine Labs, University ofWaterloo.
In this study, the dataset was collected using two excita-
tion wavelengths, 266 nm and 532 nm, to selectively tar-
get nuclei and red blood cells (RBCs), respectively. We
denote the non-radiative channels asNR266 andNR532,
while the radiative channel is labeled as R266.

From this dataset, we extracted overlapping 256×256,
resulting in approximately 500 patches. We split the

data into 70% training, 10% validation, and 20% testing
sets. The GAN model was trained with a learning rate
of 0.0002 for a maximum of 200 epochs, with early stop-
ping applied if the generator loss did not improve. This
setup ensured model stability and prevented overfitting.
Empirically, we found that setting the patch overlap

to ∼50% minimized boundary artifacts, allowing seam-
less reconstruction of the final images from processed
patches. All training was implemented in Python 3.10.6
using PyTorch 2.0.0 with CUDA 12 support, ensuring
computational efficiency.

3 Results and Discussion

3.1 Feature Extraction

To determine a suitable number of features, a prelim-
inary study was conducted using the K∗-means algo-
rithm. Feature extraction was performed for K ∈
{2, . . . , 6}, generating feature sets MK

f for each value
of K , as shown in Figure 2, top. The results indicate
that when K < 3, key structures like connective tis-
sue and cell nuclei are not effectively distinguished in
the feature images. For instance, with K = 2, these
structures merge into single feature images. However,
at K = 3, they become clearly separated. Increasing K

beyond 3 results in redundancy, with similar structures
forced into multiple images. Further experiments with
these features as input to the virtual staining model con-
firmed that K = 3 achieves maximum separation with-
out redundancy, enhancing the virtual staining process.
Similarly, PCA was applied to the PARS signals, gen-

erating six PC images, as seen in Figure 2 (bottom). Un-
like K∗-means, PCA captures data variance but lacks
alignment with specific biological structures, resulting
in feature images without clear biological separation.
For example, PC1 combined multiple structures at dif-
ferent intensities, while PC5 and PC6 appeared nearly
redundant. These observations emphasize the limita-
tions of PCAwhen applied to PARS image data, as it falls
short in isolating and emphasizing relevant structures,
which can be beneficial for improving virtual staining.

3.2 Virtual Staining

After extracting features with K∗-means, the MC-GAN
model was trained using the feature setMK

f for eachK

from 2 to 6, along with the radiative (R) channel. Since
theK features are derived from non-radiative (NR) sig-
nals and are independent of the R channel, the R chan-
nel was consistently included in the virtual staining
phase for fair comparison. Model performance was then
assessed using both visual evaluation and SSIM [20, 21],
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Figure 2: Comparison of feature extraction results of the K∗-means (top) and PCA (bottom) using human skin data. K∗-
means: WhenK < 3, major structures like RBCs (red arrows) and connective tissue (yellow arrows) are not effectively
separated. When K > 3, the features start to become redundant and are forcefully separated like in the case of RBCs
and cell nuclei (green arrows). PCA: Results for the first X components for each X ∈ {2, . . . , 6}. It can be noted that
the PCA features do not align with identifiable biological structures.

comparing colorized images to their ground truth. The
human skin dataset achieved optimal results at K = 3.

For PCA, MC-GAN models were similarly trained
with the R channel and the first X PCs for X from 2 to
6. Visual assessment and SSIM were used to determine
the optimal number of PCs, which was three. However,
these first three PCs captured only 60% of data variance,
while 137 PCs would be needed to explain 90%, limit-
ing PCA’s effectiveness in capturing critical structural
details.

Overall, features from K∗-means outperformed those
from PCA in capturing meaningful biological features
for virtual staining, as shown in Figure 3. The misalign-
ment of PCA-derived features with distinct structures
led to color blending between regions (see Figure 3, bot-
tom). For example, PCA failed to specifically highlight
RBCs, leading to low-contrast RBC colorization. In con-
trast, K∗-means at K = 3 provided superior contrast,
isolating RBCs in a bright pink color in the colorized
output (Figure 3, top). RBCs are labeled with red ar-
rows in the feature images in Figure 2, top, for reference.
K∗-means also effectively segmented nuclei and connec-
tive tissue, resulting in clearer colorization. These find-

ings support our hypothesis that channel separation en-
hances learning and improves colorization accuracy.

Both methods produced comparable SSIM metrics;
however, the K∗-means features consistently outper-
formed PCA in terms of visual clarity and contrast [12],
underlining the practical advantages of using K∗-means
for virtual staining. This improved performance has sig-
nificant implications for applications in medical diag-
nostics, where clear and accurate representation of tis-
sue structures is crucial.

After feature extraction, an analysis was performed to
identify the optimal subset of K∗-means features for vir-
tual staining. Using the optimal value of K from the
initial study, a comprehensive feature set, Mopt

f , was
created and combined with the conventional NR532,
NR266, and R266 channels to form an array, A =

[NR532,NR266,R266,M
opt
f ]. Since including all ele-

ments of A could introduce redundancy, an exhaustive
search was conducted across all possible feature com-
binations to identify the most effective set for training.
Model performance was evaluated using multiple quan-
titative metrics, including SSIM and PSNR, by compar-
ing colorized images with the true H&E counterparts.
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Figure 3: Comparison of virtual staining results using
K∗-means and PCA features using human skin data. K∗-
means (top): Results for each K ∈ {2, . . . , 6}. The find-
ings indicate that the optimal colorization is produced
when K = 3. PCA (bottom): Results for the first X
components for each X ∈ {2, . . . , 6}. The findings in-
dicate that the optimal colorization is produced when
X = 3.

The best-performing feature subsets from A were se-
lected for final model evaluation [7].

3.3 Challenges and Potential Applica-
tions

While the results indicate thatK = 3 provides the opti-
mal balance for the tissue structures in this study, chal-
lenges remain in determining the best value for K for
different tissue types and stains. For tissues with more
complex or heterogeneous structures, it may be neces-
sary to fine-tune the value of K to achieve optimal fea-
ture separation. Future work should explore the impact
of varyingK for different tissue types (e.g., skin vs. kid-
ney tissue) and staining protocols (e.g., H&E vs. PAS
stains), which may require adjustments to the feature
extraction process.

Integrating K∗-means with existing machine learning
models has the potential to significantly enhance diag-
nostic tools in pathology labs. By providing more ac-
curate and biologically meaningful feature extraction,
it could improve the model’s ability to distinguish sub-
tle tissue variations and detect early-stage abnormali-
ties, such as tumors. This, in turn, could lead to more
reliable and precise diagnoses, reducing the likelihood
of misdiagnoses and supporting pathologists in making
data-driven decisions. Ultimately, this integration could
expedite the diagnostic process, enabling quicker treat-
ment decisions and improving patient outcomes, espe-
cially in time-sensitive clinical scenarios.

4 Conclusion

This study demonstrates that the modified K-means al-
gorithm outperforms PCA in both visual contrast and
structural alignment, making it a more effective method
for separating biological structures in PARS data. The
improved feature separation achieved by K∗-means sig-
nificantly benefits virtual staining models. Its ability
to enhance virtual staining highlights its potential as a
valuable tool for medical diagnostics, especially in clin-
ical and pathology lab settings. While determining the
optimal number of features for various tissue types and
stains remains a challenge, the findings suggest that
K∗-means offers an accurate and practical solution for
virtual staining with promising real-world applications.
Future research could explore advanced feature extrac-
tion methods and test the approach on a wider range of
tissues and stains to broaden its applicability.
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