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Abstract
A key challenge in speech emotion recognition
(SER) is the lack of fine-grained datasets contain-
ing both emotion and intensity labels, which lim-
its the performance of data-demanding deep learn-
ing models in applications like social companion
robots. Most existing datasets cover only ba-
sic emotions and rarely include nuanced inten-
sity annotations. To address this gap, we present
using semi-supervised learning (SSL) to create a
larger fine-grained SER (FGSER) dataset from lim-
ited available datasets. Our model classifies 5
distinct emotions—anger, sadness, happiness, dis-
gust, and fear—each represented across three inten-
sity levels: low, medium, and high. We propose
two SSL approaches tailored to different applica-
tion needs: a Random Forest Classifier (RFC) for
edge-computing environments that demand compu-
tational efficiency, and a Convolutional Neural Net-
work (CNN) for scenarios where higher accuracy is
critical. Including only high-confidence predictions
to the original small dataset will increase the size
of the dataset and hence improvement of the clas-
sifier’s accuracy and generalization. This enhance-
ment supports the development of conversational
AI with high emotional intelligence (EQ), advanc-
ing FGSER for richer human-computer and human-
robot interactions, more specifically for social com-
panion robotic applications.

1 Introduction

Emotions are integral to human communication, con-
veying information about an individual’s mental state,
intentions, and personality [1]. Speech Emotion Recog-
nition (SER) aims to identify and classify emotions from

speech signals, independent of semantic content [2].
SER plays a vital role in human-computer interaction
(HCI), enabling systems to respond empathetically, with
applications in security, healthcare, education, and cus-
tomer interactions[2, 3].

Recognizing emotions accurately from speech re-
mains challenging due to variability in expression,
which includes differences in tones, pitches, and in-
tensities [4]. Capturing fine-grained emotional inten-
sities is essential, especially in applications like social
robotics, where nuanced emotional responses are cru-
cial for meaningful interaction. Despite these needs, ex-
isting SER datasets often lack sufficient annotations for
emotion intensity, limiting their applicability for (fine-
grained speech emotion recognition) FGSER tasks [5].

To address these limitations, we implement a semi-
supervised learning (SSL) framework that leverages a
small labeled dataset to annotate a larger set of unla-
beled data. We develop two tailored approaches: one op-
timized for edge-computing scenarios with limited com-
putational resources, and another designed for applica-
tions prioritizing high accuracy, where computational
capacity is not a constraint. For edge applications, we
employ an ensemble method using a Random Forest
Classifier (RFC). In contrast, the high-accuracy model
uses a Convolutional Neural Network (CNN).

The rest of this paper is organized as follows: In Sec-
tion 2, we highlight the relevant research in this area
followed by our methodology and experimental setup
in Section 3. We then present and discuss the results in
Section 4. Finally, Section 5, summarizes our contribu-
tion and highlights future works.

2 Related Work

Recent advancements in FGSER have employed various
methodologies to capture nuanced emotional expres-
sions. For instance, Wang et al. [6] introduced Speech
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Emotion Diarization (SED), which identifies emotion
classes and their temporal boundaries within utterances,
thereby enhancing classification accuracy and boundary
detection. However, SED lacks focus on intensity vari-
ations critical for FGSER, as noted by Hamza et al. [7].
Alternative approaches have utilized statistical models
like Hidden Markov Models (HMMs) in speech emotion
recognition, offering a probabilistic framework to model
temporal dynamics in speech signals. Nonetheless, Song
et al. [8] highlight that HMMs often struggle with cap-
turing the complexity of fine-grained emotions due to
their reliance on predefined states and transitions .

In recent years, deep learning techniques, particularly
CNNs, have been effectively applied in speech emotion
recognition tasks. For instance, Tang et al. [9] proposed
a CNN-Transformer model with a multidimensional at-
tention mechanism, achieving significant performance
improvements. Similarly, Peng et al. [10] introduced
an efficient speech emotion recognition model using
multi-scale CNN and attention mechanisms, demon-
strating enhanced accuracy. In addition to CNNs, LSTM
networks have also been explored for speech emotion
recognition due to their ability to capture temporal de-
pendencies. Jafri et al. [11] demonstrated that com-
bining CNNs with LSTMs improves recognition accu-
racy by leveraging both spatial and temporal features in
speech data.

Furthermore, multimodal approaches have been ex-
plored to capture nuanced emotional cues. Li et al. [12]
propose a multimodal approach for fine-grained speech
emotion recognition, using temporal alignment mean-
max pooling and a cross-modality excitement module to
capture nuanced emotional cues across modalities. Their
model outperforms baselines on real-world datasets, ef-
fectively enhancing prediction accuracy in fine-grained
emotional recognition.

RFC classifiers have emerged as a viable alternative
to CNNs for speech emotion recognition, particularly
when computational resources and data availability are
limited. Rezapour Mashhadi and Osei-Bonsu [2] demon-
strated that RFCs are faster and more suitable for smaller
datasets. Additionally, their computational efficiency
and adaptability make them especially advantageous for
real-world applications, as noted by Aishwarya et al.
[13] in their exploration of efficient machine learning
classifiers and ensemble methods for emotion recogni-
tion tasks . Despite these advancements, limited labeled
data remains a primary obstacle in FGSER. Zhu and Sato
[14] show that ensemble-based semi-supervised learn-
ing approaches like NST have the potential to expand
labeled datasets with minimal manual annotation, as ev-
idenced by experiments on the CREMA-D dataset.

Building upon these approaches, this work proposes

a framework centered on RFC and CNN models within
a semi-supervised learning paradigm to enhance FGSER
accuracy and adaptability across intensity levels. This
contributes to applications in HCI and social robotics,
where nuanced emotional understanding is essential.

3 Methodology andExperimental
Setup

In this section, we discuss the datasets, steps in data
preparation, feature extraction, and the architecture and
frameworks for SSL classification.

3.1 Datasets

There are several publicly available SER datasets with
CREMA-D and RAVDESS being the ones with fine-
grained labels but different levels. The CREMA-D
dataset comprises 7,442 audio clips from 91 actors, with
six emotions and four intensity levels (low, medium,
high, unspecified)[15], providing fine-grained labels for
our study. The RAVDESS dataset, containing 7,356 files
from 24 actors with seven emotions, uses two inten-
sity levels: normal and strong [16]. For consistency, we
mapped ”normal” to ”medium” and ”strong” to ”high.”

3.2 Data Harmonization

To harmonize the datasets, we standardized the nam-
ing conventions and resampled all audio files to 16
kHz. Padding was applied to a maximum length of 220
frames, corresponding to the longest audio sample in
our dataset, to ensure uniform input size for feature ex-
traction and model training. This approach aligns with
practices recommended in speech processing literature
[17]. Furthermore, we focused on five emotions com-
mon across all datasets and categorized them into three
intensity levels: low, medium, and high.

3.3 Data Augmentation

To address the limited dataset size and enhance model
robustness, we applied data augmentation by adding
Additive White Gaussian Noise (AWGN) at a signal-to-
noise ratio (SNR) of 20 dB to each audio file. This ap-
proach is commonly used in speech processing to simu-
late real-world noise conditions and improve generaliza-
tion [17]. Additionally, both models incorporate pitch-
shift augmentation, which modifies the pitch of audio
signals without affecting the tempo [18].

These techniques are commonly used in speech pro-
cessing to improve generalization and robustness of
models.
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Figure 1: Distribution of emotion intensity levels af-
ter merging CREMA-D and RAVDESS datasets. Map-
ping RAVDESS intensity 0 to ”medium” and 1 to ”high”
resulted in roughly 50% fewer ”Emotion Low” samples
compared to ”Medium” and ”High”, resulting in an un-
balanced dataset.

3.4 Data Splitting
We utilized the CREMA-D dataset, comprising 7,442
samples, and the RAVDESS dataset, which contains
1,440 samples. Since our focus is on fine-grained emo-
tion classification, we excluded samples labeled as neu-
tral, calm, and surprise, as they either lack intensity lev-
els or do not align with our classification goals. After
this filtering, only 960 samples from RAVDESS were re-
tained. Additionally, some samples in the CREMA-D
dataset lack defined intensity levels, so we filtered the
dataset to include only those with specified intensities,
resulting in 1,365 samples. This process yielded a com-
bined dataset of 2,325 samples.

CREMA-D includes three intensity levels: high, mid,
and low, while RAVDESS contains only high and mid
intensity levels. To address this class unbalance, we ap-
plied stratified sampling [19] to ensure a balanced class
distribution across both datasets. The resulting 2325
were further augmented using the augmentation tech-
niques defined above, enhancing the model’s robustness
and diversity in data representation.

The dataset is then split into 80% for training and 20%
for testing.

3.5 Feature Extraction
In alignment with existing literature, we use mel-
spectrograms as our primary feature representation due
to their effective capture of both spectral and tempo-
ral aspects essential for identifying different emotions
and intensities in speech [20]. Mel-spectrograms align
closely with human auditory perception, as they map
frequencies to the mel scale, thereby providing a per-

ceptually meaningful representation where lower fre-
quencies are in narrower intervals, and higher frequen-
cies are spaced wider apart [20]. Recent studies have
shown mel-spectrograms to be highly effective in SER
tasks [21]. Our preliminary experiments confirmed
that mel-spectrograms achieved higher classification ac-
curacy compared to other relevant features; Mel Fre-
quency Cepstral Coefficients (MFCCs) and spectral con-
trast. Hence, for conciseness, we only include the mel-
spectrogram in this paper. Using the librosa library [22],
we computed mel-spectrograms with 128 mel bands, a
frame size of 2048 samples, and a hop length of 512 sam-
ples. We converted power spectrograms to a decibel
scale with librosa.power-to-db to compress the dynamic
range and highlight perceptually relevant features.

3.6 Model Architecture and Training

3.6.1 Random Forest Classifier

As an ensemble-based classifier, RFCs are well-suited for
edge computing environments due to their inherent par-
allelism and computational efficiency. Each tree in a ran-
dom forest operates independently, allowing for parallel
processing and efficient utilization of limited computa-
tional resources. This characteristic makes RFCs advan-
tageous for deployment on edge devices, where compu-
tational power and memory are often constrained. Addi-
tionally, RFCs are robust against overfitting, as they ag-
gregate multiple decision trees trained on different data
subsets, enhancing generalization performance. This ro-
bustness is particularly beneficial when working with
smaller or moderately sized datasets, such as those com-
monly found in FGSER tasks. The strengths of Random
Forests, including their efficiency and effectiveness in
various applications, have been well-documented [23].

The RFC model in this study is configured with
500 decision trees (estimators), each trained indepen-
dently on bootstrapped subsets of the data to en-
hance generalization. To address class imbalance, the
class weight=’balanced’ parameter dynamically adjusts
weights based on class frequencies in the input data. De-
fault parameter settings in Python 3.9.19 were utilized
for the number of features considered (max features)
and tree depth (max depth)

3.6.2 Convolutional Neural Network

As a deep learning model, CNNs are highly effective for
tasks requiring detailed feature extraction, such as SER.
They excel at capturing intricate temporal and spectral
patterns in audio spectrograms, which are essential for
distinguishing nuanced emotions and their intensities.
CNNs can even directly model raw speech signals, ef-
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Figure 2: Architecture of 2D-CNN

fectively learning complex representations for emotion
recognition [24].

However, this enhanced accuracy comes with in-
creased dataset size and computational demands, mak-
ing CNNs more suitable for centralized systems with
substantial resources rather than edge devices with lim-
ited capabilities and small dataset. Studies on efficient
CNN architectures have explored methods to reduce
computational load while maintaining performance,
highlighting the trade-offs between accuracy and re-
source consumption in deploying CNNs for SER[25].

Our CNN model, shown in Figure 2, consists of
four convolutional layers with progressively smaller fil-
ter sizes, optimized for high-dimensional datasets like
CREMA-D. Each convolutional layer uses a ReLU activa-
tion function and is followed by MaxPooling to reduce
dimensionality. Dropout layers, with values of 0.1 and
0.5, are included at appropriate stages to prevent over-
fitting and improve generalization. The model also inte-
grates L1 and L2 regularization across its convolutional
and dense layers to further control overfitting. The net-
work concludes with a fully connected dense layer with
15 units (representing emotion classes) and a softmax
activation for classification. The Adam optimizer[26] is
used for training, with a learning rate decay of 10−6,
ensuring smooth convergence.

3.7 Semi-Supervised Learning (SSL)
Our initial combined RAVDESS-CREMA-D dataset in-
cludes 2,325 samples, of which 80% (1,860 samples) are

used for training. Neutral samples were removed from
the unlabeled list in CREMA-D, resulting in 4,990 unla-
beled samples for prediction. These samples are anno-
tated with emotion type (e.g., anger) but lack intensity-
level labels (e.g., high/low). Following prediction, we re-
tained only high-confidence samples, discarding those
with incorrect emotion type predictions regardless of in-
tensity level. In the SSL framework (see Fig. 3), these
samples are then assigned pseudo-labels and added to
create a larger dataset, without manual annotation [27],
for re-training to enhance the model performance.

4 Results

This section presents the results of two experimental
stages using both RFC and CNN models. The first ex-
periment uses an initial dataset containing 1,860 training
samples (referred to as Training Set 1 in the tables). In
the second experiment, we expand this set by incorpo-
rating additional pseudo-labeled samples generated via
SSL to create Training Set 2. For testing, we use 4,990
unlabeled samples from the CREMA-D dataset. These
samples, which lack intensity labels but have emotion
type labels, are passed to RFC or CNN models for emo-
tion type and intensity predictions. Only samples with
correct emotion type predictions are accepted and as-
signed a pseudo-label. To evaluate the impact of in-
creased dataset size on model performance, we then
add these pseudo-labeled samples to the original dataset
for re-training and testing creating Training Set 2. We
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Figure 3: SSL Framework for Creating a Larger FGSER Dataset.

chose four metrics—accuracy, precision, recall, and F1-
score—because they provide complementary insights.
Accuracy measures overall correctness, precision eval-
uates the model’s reliability for specific classes, recall
ensures sensitivity to all instances, and the F1-score bal-
ances the trade-off between precision and recall.

Out of the 4,990 unlabeled samples, the CNN model
accurately predicted the emotion type for 1,703 samples
(around 30%), allowing us to accept the corresponding
intensity level predictions and expand the dataset for re-
training. Following this increase, CNN performance im-
proved, with average accuracy rising from 82% to 85%,
demonstrating the model’s enhanced performance with
a larger dataset—a common advantage in deep learning.

On the other hand, RFC accurately predicted the
emotion type of approximately 1990 samples (around
40%). As an ensemble model, RFC’s performance re-
mained statistically consistent, demonstrating its ro-
bustness with smaller datasets and its suitability for edge
computing applications. Notably, the CNN achieved
about 16% higher accuracy than RFC, suggesting that
extending our SSL approach to include additional pub-
licly available datasets could further enhance the accu-
racy of our deep learning model. Moreover, an analysis
of the confusion matrices in Figure 4 and Figure 5 reveals
the models’ performances on specific emotion-intensity
pairs. For instance, the RFC model struggles to differ-
entiate Fear Low from Sad Medium due to overlapping
spectral features. In contrast, the CNN achieves better
differentiation across intensity levels, as reflected in re-
duced misclassifications in its confusion matrix.

5 Conclusion

In this paper, we proposed a SSL approach to expand
FGSER datasets by predicting emotion intensity levels
for unlabeled samples, thereby enhancing model accu-

Table 1: The average performance of RFC model is statis-
tically the same with the increase training dataset size.
Training Set 1 contains 1,860 samples and Training Set
2 contains 3,452 samples.

Metric With Training
Set 1

With Training
Set 2

Accuracy 69.11% ± 1.03% 69.97% ± 1.68%
Precision 68.47% ± 0.83% 69.73% ± 1.94%
Recall 68.93% ± 1.16% 67.67% ± 1.54%
F1-Score 68.00% ± 1.13% 68.00% ± 1.65%

Table 2: The average performance of CNN model in-
creases with the training dataset size. Training Set 1
contains 1,860 samples and Training Set 2 contains 3222
samples.

Metric With Training
Set 1

With Training
Set 2

Accuracy 82.00% ± 1.46% 85.00% ± 1.15%
Precision 81.50% ± 1.41% 84.31% ± 1.25%
Recall 81.31% ± 1.62% 84.25% ± 1.18%
F1-Score 81.13% ± 1.54% 84.32% ± 1.20%

racy. Two models were evaluated: a RFC classifier and a
CNN. The RFC, chosen for its computational efficiency
and suitability for edge computing, demonstrated sta-
ble performance with limited data. The CNN, by con-
trast, showed improved accuracy with the additional
pseudo-labeled samples, underscoring the data scalabil-
ity advantages of deep learning models. Overall, our SSL
method successfully increased dataset size, contribut-
ing to improved performance of deep learning mod-
els, especially in data-intensive FGSER tasks. These ad-
vancements are particularly valuable in social compan-
ion robotics, where a nuanced understanding of emo-
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Figure 4: Confusion Matrix with Training Set 2 for
RFC. The main confusion is between Fear Low and Sad
Medium due to overlapping spectral features.

Figure 5: Confusion Matrix with Training Set 2 for CNN
shows significantly less confusion with other classes.

tions is crucial for fostering meaningful HCI.
Looking ahead, we plan to extend our SSL approach

to additional datasets, such as SAVEE[28] and TESS[29],
to further enhance dataset size, diversity, and model ro-
bustness. We also aim to conduct comparative stud-
ies leveraging transfer learning with deep learning ar-
chitectures like ResNet, AlexNet, and InceptionNet,
which have demonstrated strong performance in emo-
tion recognition tasks[30]. Additionally, we intend to
explore models specifically tailored for signal process-
ing and emotion classification, such as LSTMs[11] and
MAMBA [31], which excel at capturing temporal and
contextual dependencies in speech data. By combin-
ing the advantages of transfer learning and these state-
of-the-art architectures, we anticipate further improve-

ments in both model performance and generalization.
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