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Abstract
Faceoffs are pivotal events in hockey, marking
strategic resets in gameplay that influence team
positioning and puck possession. Detecting these
events in video data can provide valuable insights
for coaches and analysts, enabling the study of
player formations and strategies around these crit-
ical moments. This work presents a novel frame-
work for detecting ice hockey faceoffs. Our ap-
proach processes overhead video sequences using
a multi-stage pipeline, incorporating object detec-
tion and segmentation to track player trajectories
across frames. We employ state of the art detec-
tors and tracking tools, enabling tracking and trajec-
tory analysis for each player. Additionally, prepro-
cessed sequences are used to better ensure accurate
player tracking. We demonstrate the framework’s
effectiveness in automatically identifying faceoffs,
with promising results that suggest its potential for
broader applications in sports analytics. By enhanc-
ing the visibility of faceoffs and player interactions
in hockey, this work contributes toward automated
sports analytics, providing a robust tool for studying
patterns and tactics in high-paced, dynamic sports
environments.

Introduction

Detecting events in hockey is crucial for analyzing and
improving team strategies, player performance, and
overall game understanding. In this article, events are
defined by the simultaneous actions of multiple players
at a specific instant, focusing on coordinated team ac-
tivities and formations. Key events like faceoffs, passes,
goals, and turnovers often indicate shifts in game dy-
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namics and can reveal patterns that impact the game’s
outcome. For coaches and analysts, identifying these
events enables targeted feedback to players, supports
strategic decision-making, and enhances preparation for
future games. On a broader scale, event detection in
hockey is also valuable in sports analytics research, aid-
ing in the development of automated systems that make
sports analysis more efficient and objective.

Ice hockey is characterized by its exceptionally fast
pace, with players moving rapidly across the ice, creat-
ing motion blur that can obscure important details. This
restricts our ability to fully analyze the spatial and tem-
poral relationships among players, an essential factor in
understanding team dynamics, assessing player perfor-
mance, and uncovering tactical patterns. These limita-
tions have traditionally made it difficult to consistently
and accurately capture the information needed to rate
individual players, identify play patterns, or offer coach-
ing insights.

This article proposes a solution to the challenging task
of faceoff detection as an important event in ice hockey
games.

Faceoffs in ice hockey are critical points where game-
play is reset, either at the start of a period, after a goal,
or following a stoppage in play, typically signaled by a
referee’s whistle. Faceoffs not only impact puck posses-
sion but also reveal underlying strategies, as teams often
employ particular formations or player roles depending
on the location of the faceoff and the game’s context.
Recognizing and analyzing faceoffs in video footage can
provide insights into team strategies, player position-
ing, and success rates, adding valuable information to
the coaching process.

The main contribution of this paper is its tempo-
ral feature structure design, which includes first- and
second-order positional information about players on
the ice. Our framework’s feature design draws inspira-
tion from our prior knowledge of faceoff events. Face-
off events are usually more stable and structural. Thus,
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Figure 1: A video frame from a publicly available over-
head view ice hockey game video [1] with players’ tra-
jectories and bounding boxes.

player position on the field and player speed could be a
discriminative feature for those events. The framework
presented here leverages state-of-the-art computer vi-
sion tools in order to properly extract the players’ loca-
tions analyze the trajectories of the players.

In the following sections, we review prior efforts to
automate hockey event detection and explain how our
approach builds upon and diverges from these methods.
We go over the concepts that we have used for our meth-
ods and then we detail the implementation in the section
. We then present results, showcasing the effectiveness
of this framework in identifying faceoffs, and discuss po-
tential implications for broader hockey analytics appli-
cations.

Related Works

The authors in [2] developed a pipeline for event detec-
tion in sports videos that are only coarsely annotated.
Their method involves inputting frames into a CNN to
extract spatial features, which are then passed through
multiple temporal CNN towers with varying receptive
fields to capture events over different time scales. A Soft-
max layer is applied to obtain event probabilities. Unlike
our approach, this method does not utilize tracklets, and
it was tested on a different dataset.

In [3], the authors created a ResNet-based model fo-
cused on classifying sports images. Their work is strictly
spatial, without any temporal aspect, as it does not con-
sider sequential information across frames.

The authors of [4] aimed to improve event-based ob-
ject detection by selectively processing only the most
important data, which reduces computational costs and
improves efficiency. Their work focuses on scene-
adaptive methods to optimize object detection for high-
dynamic events.

The pipeline in [5] targets action spotting using an ac-

Figure 2: The pipeline which helps us extract spatio-
temporal arrays from video sequences

tive learning approach. It includes a prediction function
and a clip selection function, which are based on ”uncer-
tainty” and ”entropy” measures to prioritize annotation.
Starting with a small labeled dataset, they iteratively ap-
ply the clip selection function to identify the most infor-
mative clips for further annotation, thus optimizing the
labeling process.

In [6], the authors implemented a player tracking sys-
tem using the YOLOv8 model, allowing for accurate and
efficient tracking of players in sports footage.

The authors in [7] worked on action recognition by
using optical flow to capture motion information, pro-
viding additional temporal context to improve the recog-
nition of sports actions.

Finally, in [8], the authors leveraged puck localization
as a basis for event recognition in hockey. Their method
combines video features and player position heatmaps
to infer the puck’s location, allowing for more accurate
identification of events based on puck movement and
positioning.

Method

In this section, we outline the methodology used to ex-
tract and classify spatio-temporal arrays from video se-
quences in the context of faceoff and whistle event de-
tection in hockey games. We start by annotating the rel-
evant timestamps in the video, followed by the detection
and tracking of players using advanced computer vision
techniques. These techniques allow us to capture the
dynamic movement of players and segment them accu-
rately. We then proceed to classify the extracted spatio-
temporal features using machine learning algorithms to
predict event types. The pipeline is designed to facili-
tate the efficient processing of large video datasets while
maintaining high accuracy in detecting events.

Data Labeling
For every video, we have annotated the different times-
tamps of the video where a faceoff or a whistle would
take place. The whistle event can be part of the neg-
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ative class because, although it may indicate a stop-
page, it is not specifically a faceoff, which typically
involves players readying for puck possession at des-
ignated spots. Including whistles as a negative class
helps the model learn to differentiate faceoffs from
other whistle-stopped events, reducing false positives by
clearly distinguishing faceoff events from similar stop-
page signals in the game. This distinction is essential for
accurate faceoff detection and minimizes misclassifica-
tion in real-world applications.

In our frame work:

• T = {t1, t2, ..., tn} is the set of annotated times-
tamps (specific moments in the video where clips
are extracted).

• ∆t represents the size of the temporal window.

• Xi is the video sequence going from

[ti −∆t/2, ti +∆t/2]

• Yi ∈ {0, 1} is the label (event type) corresponding
to clip i, where 0 might represent one event type
(e.g., ”faceoff”) and 1 represents the other event
type (e.g., ”whistle”).

Detection and Tracking
The core of our framework lies in transforming the clip
Xi into spatio-temporal arrays X̃i (see figure 2). To this
extent, we used the object detection tool [9] to detect
the players which uses a pre-trained Detection Trans-
former (DETR) model with a ResNet-50 backbone. The
detections dj are then used as prompts for the input tool
Segment Anything Model 2 (SAM2) [10]. SAM2 seg-
ments and tracks the objects by refining the mask itera-
tively, enabling more precise boundaries; which makes
it robust to occlusions compared to traditional bounding
boxes.

• For sample Xi, using DETR, we can get the detec-
tions {dij | 0 ≤ i ≤ nsamples, 0 ≤ j ≤ nplayers}
with nplayers being the number of players detected
(highly dependent on the clarity of the image).

• For each detection, we get a tracklet which is a
mask propagating throughout the frames of the se-
quence. For clip Xi we get the tracklets {mijk |
i, j, k ∈ R, 0 ≤ i ≤ nsamples, 0 ≤ j ≤
nplayers, 0 ≤ l ≤ k ≤ nframes}.

• After a few post-processing steps (padding, data
augmentation and discrete differences), we can ob-
tain the velocity spatio-temporal array X̃i from the
initial clip Xi. Before the discrete difference, we
just have a position spatio-temporal array.

We obtain the dataset D, such that D = {(X̃i, Yi) |
0 ≤ i ≤ nsamples}

K-nearest-neighbours
In order to classify the extracted features arrays from
the game, K-nearest-neighbours can be used. Given a
dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈
Rd are the feature vectors and yi ∈ R are the corre-
sponding labels, the KNN algorithm for a query point
q ∈ Rd is defined as follows:

1. Compute the distance between the query point q
and all points in the dataset. Common distance metrics
include Euclidean distance:

d(xi, q) =

√√√√ d∑
k=1

(xi,k − qk)2

2. Sort the distances and select the k-nearest neigh-
bors, i.e., the k smallest values of d(xi, q).

3. For classification tasks, the predicted label ŷq for
the query point q is determined by the majority vote of
the k nearest neighbors:

ŷq = mode(yi1 , yi2 , . . . , yik)

4. For regression tasks, the predicted value ŷq is the
average of the labels of the k nearest neighbors:

ŷq =
1

k

k∑
j=1

yij

where {i1, i2, . . . , ik} are the indices of the k nearest
neighbors based on the computed distance.

Our methodology combines advanced object detec-
tion and segmentation techniques to create accurate
spatio-temporal representations of hockey events. By
integrating tools like DETR for player detection and
SAM2 for precise tracking, we are able to handle occlu-
sions and noise effectively. The K-nearest-neighbors al-
gorithm serves as a powerful classifier for the labeled
spatio-temporal arrays, ensuring reliable event detec-
tion. This approach provides a robust framework for au-
tomating the analysis of hockey video sequences, allow-
ing for accurate recognition and classification of critical
in-game events like faceoffs and whistles.

Experimental Details
The data we had consisted of 24 overhead-view videos
provided by our collaborators at Stathletes. They cor-
responded to multiple 10 minutes video of Ice hockey
games at 30 frames per seconds. Each video was
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recorded with a fixed camera but the position of the cam-
era changed based on the rink. Each frame was first con-
verted from its original BGR color format to a grayscale
image. To minimize noise and smooth the image, a me-
dian filter with a kernel size of 31 was applied. This step
reduces minor variations and preserves edge integrity,
facilitating more accurate contour detection in subse-
quent steps. The grayscale image was then thresholded
with a binary thresholding method. Pixels with inten-
sities above 128 were set to 255 and those below were
set to 0. This transformation accentuates the shape of
potential objects, simplifying the contour detection pro-
cess.

We also had to do some cropping to remove the crowd
from the view such that focus could solely be on the rink;
this would increase the proper detection and tracking of
the players.

To isolate the rink, the largest contour was selected
based on contour area. The assumption is that the largest
contour in the frame represents the most relevant object
or feature. A bounding rectangle was generated around
the largest contour yielding the coordinates (x, y) of the
top-left corner, along with the width (w) and height (h)
of the rectangle. This bounding box enables straightfor-
ward localization of the rink.

For our DETR model, we filtered detected objects by
applying a threshold of 0.95 on the confidence scores to
retain only high-confidence detections. The bounding
boxes of these selected objects are then passed to the
subsequent segmentation stage.

From the initial set of 190 samples, only 94 valid
samples remained after processing them through the
pipeline.

Here is a breakdown of our approach:

• The dataset, consisting of feature samples (sam-
ples) and corresponding labels (labels), is first di-
vided into training data (70%) and a temporary set
(30%). The temporary set is further split equally
into validation and test sets (15% each of the orig-
inal dataset). This three-way split ensures that the
training data is used for model fitting, the valida-
tion set helps with hyperparameter tuning, and the
test set provides a final, unbiased evaluation of the
model.

• To optimize the KNN model, we use a grid search
over a range of possible hyperparameters (specif-
ically, the number of neighbors, k). A KNN clas-
sifier is instantiated. A parameter grid is defined
to test values of k ranging from 1 to 20. The Grid-
SearchCV function is employed to perform a 5-fold
cross-validation for each value of k, using accuracy
as the scoring metric. The best value of k is iden-

tified based on the cross-validation results, and the
corresponding model is retrieved.

• Validation Set Evaluation After determining the op-
timal number of neighbors (k), the best-performing
model from the grid search is evaluated on the val-
idation set: Predictions are made on the validation
data using the best KNN model.

• Test Set Evaluation Finally, the model’s generaliza-
tion capability is assessed on the test set: Predic-
tions are made using the optimized KNN model.
The test set accuracy score and a detailed classi-
fication report, including precision, recall, and F1
scores, are generated and can be shown in Table 1.

Results

Figure 3: Principal component analysis embeddings of
the different location arrays

Figure 4: Principal component analysis embeddings of
the different velocities arrays

Figure 3 and 4 show the principal component analysis
(PCA) embeddings for the two different feature choices;
while using trajectory arrays leads to indistinguishable
embeddings, velocity arrays lead to embeddings which
are more revealing. Faceoff embeddings are tightly clus-
tered near the origin, reflecting minimal velocity vari-
ance due to controlled positioning before the puck drop.
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In contrast, whistle event embeddings are more dis-
persed, indicating greater variability in player move-
ments across different gameplay scenarios. This distinc-
tion suggests that faceoffs have a unique velocity pat-
tern, which could aid automatic event classification in
hockey, while whistles could serve as a negative class
for distinguishing faceoffs. The tight clustering of face-
offs indicates they have a unique velocity pattern, poten-
tially useful for automatic event classification in hockey.
The wider spread of whistle events highlights the vari-
ability in player movements around stoppages not re-
lated to faceoffs, reinforcing the idea that whistles could
serve as a negative class for identifying faceoffs.

Table 1: Test Set Metrics for trajectory features

Class Precision Recall F1-Score Support
faceoff 0.62 0.53 0.57 53
whistle 0.49 0.59 0.53 41
Accuracy 0.55
Macro Avg 0.56 0.56 0.55 94
Weighted Avg 0.56 0.55 0.55 94

Figure 5: Confusion matrix for set with trajectory fea-
tures

Table 2: Test Set Metrics for velocity features

Class Precision Recall F1-Score Support
faceoff 0.82 0.92 0.87 53
whistle 0.88 0.73 0.80 41
Accuracy 0.84
Macro Avg 0.85 0.83 0.83 94
Weighted Avg 0.85 0.84 0.84 94

Table 1 compares the classification accuracy achieved
using two different types of arrays: Position and Veloc-
ity. The accuracy was obtained as the number of correct
prediction over the number of predictions in total.

Figure 6: Confusion matrix for set with velocity features

The location array yields an accuracy of 0.55 with a
k parameter of 9, suggesting that using only position
data provides mediocre predictive capability. In con-
trast, the velocity array achieves a significantly higher
accuracy of 0.84 with k=1, indicating that velocity data is
more effective for this classification task. This improve-
ment suggests that velocity captures more informative
dynamics relevant to event detection, potentially due to
its ability to reflect player movement patterns that are
less apparent when only positional data is considered.

The test set confusion matrix in figure 6 confirms that
more whistles are taken whistles (False Positives) are
predicted to be faceoffs that the reverse, this corrobo-
rates the embeddings shown in Figure 4. The variance of
the whistles embeddings is greater than the one of the
faceoff, there are more change for some whistles to be
confused with faceoffs near the center of the plot (where
the faceoffs embeddings are concentrated).

Conclusion

In this paper, we introduced a novel framework for au-
tomatically detecting faceoff events in ice hockey videos
using computer vision and player tracking techniques.
By leveraging object detection and segmentation mod-
els, we were able to capture and analyze player trajecto-
ries and velocity patterns to differentiate between face-
offs and other whistle-stopped events. Our results high-
light the effectiveness of using velocity data over posi-
tional data for faceoff detection, as it captures the subtle
movement dynamics that characterize these events.

In future work, we aim to incorporate homography
transformations to obtain real positional data that ac-
counts for the perspective distortion in overhead video
footage. This will provide more accurate spatial repre-
sentations of player positions on the rink. Additionally,
we plan to explore the use of broadcasted views in our
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analysis, rather than relying solely on overhead views,
as broadcasted views tend to be the most abondant types
of views. These enhancements will contribute to creat-
ing a more robust, adaptable tool for sports analytics in
ice hockey.

We can also make this study more robust by quan-
tifying the detection rate, and mask propagation rate
to quantify the validity of our approach. Furthermore,
we also intent on aggregating images embeddings with
tracking data embeddings to increase the likelihood of
detecting events.
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