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Abstract
In this paper, we present Team Waterloo’s winning
approach for solar power forecasting in Climate-
Hack.AI 2023-2024, an international machine learn-
ing competition. Our model leverages Numerical
Weather Prediction (NWP), high-resolution visible
(HRV) satellite imagery, and solar panel site meta-
data to predict photovoltaic (PV) power output over
a 4-hour window. Our solution was an ensemble of
Perceiver models that used spatial semantic pointers
for spatial-temporal encoding, dynamic cropping,
and efficient data handling. Our model can provide
low-latency, high-accuracy forecasts and achieved a
mean absolute error of 0.081 on the competition test
set.

1 Introduction

Solar power forecasting is an important task for elec-
tricity network operators. It is one of four major areas of
energy forecasting, along with wind forecasting, electric
load forecasting, and electricity price forecasting [1].

The infrastructure that connects solar panels to the
power grid is complex and requires accurate estimates
of how much photovoltaic (PV) energy will be available
in the future. Unlike non-renewable energy sources, re-
newable power generation from wind and solar can vary
drastically in the short-term. In the case of solar power,
cloud cover has a direct and immediate effect on PV out-
put but is very difficult to predict. Energy systems op-
erators (ESOs) must consider the sum of renewable and
non-renewable power generation to ensure that electric-
ity supply always matches demand.

To maintain a balanced power grid when facing vari-
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able weather conditions, ESOs leverage natural gas tur-
bines to supplement renewable sources during sud-
den drops in power production. These generators are
kept idling because they take several hours to start
up from cold, and consequently they produce a sig-
nificant amount of carbon dioxide [2]. When fluctua-
tions occur in solar power, the natural gas generators,
called spinning reserves, ramp up quickly to their ca-
pacity. Improving the accuracy of existing solar fore-
casting models will improve our ability to schedule spin-
ning reserves, thereby reducing our reliance on non-
renewable energy sources to satisfy these short-term
power deficits.

Open Climate Fix (OCF) is a non-profit product lab
funded by Google and NVIDIA that seeks to reduce
greenhouse gas emissions as rapidly as possible. OCF
places particular emphasis on solar energy forecasting
as a research area with high potential for climate im-
pact. In Great Britain, for instance, the National Grid
Operator could reduce its carbon emissions by 100 kilo-
tons per year using better PV nowcasting [3]. Globally,
this translates to approximately 50 megatons of CO2 per
year by 2030.

1.1 ClimateHack.AI 2023-2024

In November 2023, Open Climate Fix announced Cli-
mateHack.AI 2023-2024 (henceforth referred to as Cli-
mateHack), a global machine learning competition for
PV forecasting. The goal was to advance the state-of-
the-art in site-level solar forecasting over a 4-hour pre-
diction window. The competition targets the United
Kingdom as the region of interest due to its cloudy
weather, which leads to high variability in PV produc-
tion. Accurate site-level solar forecasts can be aggre-
gated at the grid supply point level to produce estimates
that are directly beneficial to grid operators for the pur-
pose of scheduling reserves. Furthermore, large spin-
ning reserves can take up to four hours to reach their
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capacity, matching the forecast horizon of the competi-
tion [2].

Since ESOs benefit most from near-real time PV fore-
casts, designing a low-latency forecasting pipeline that
could ingest and output predictions quickly was a high
priority. Only data sources that would be available in a
live production setting could be utilized.

It is difficult to define what is considered state-of-the-
art in solar forecasting. Photovoltaic power forecasts
can be performed at the national level, grid supply point
(GSP) level, or site level. Power production can also be
forecasted over different time horizons and at different
intervals. Forecast errors generally increase with higher
spatial resolutions, over longer time horizons, and with
shorter forecast frequencies. Moreover, existing solar
forecasting models have not been benchmarked on an
industry-standard dataset. Error metrics can be easily
biased by including more test values in the early morn-
ing or evening, when the magnitude of power produc-
tion is generally lower, yielding lower prediction errors.

Open Climate Fix had previously achieved state-of-
the-art results in GSP-level forecasting using the same
dataset, achieving 6.34 normalized MAE [4]. This, how-
ever, was for 2-hour forecasting at 30-minute intervals,
and their models had access to five years of training data.
GSP-level solar generation values have significantly less
variability than those from individual PV systems, so
site-level forecasting is a more challenging task.

This paper outlines Team Waterloo’s final submission
to the ClimateHack competition. The objective of the
competition was to predict a 4-hour forecast of a so-
lar panel site’s normalized PV output at 5-minute inter-
vals, given the past hour of historical data and predicted
weather data over the forecast window. Model perfor-
mance was evaluated using mean absolute error (MAE)
between model predictions and the true PV site produc-
tion on a held-out test set that was hidden to the com-
petitors.

2 Solution Formulation

The largest determinant of solar power production is in-
cident solar irradiance—essentially, the amount of sun-
light that strikes the surface of the solar panel [1]. This
irradiance depends on both weather conditions and cal-
endar variables. Calendar variables, such as the angle
of the sun in the sky at a given time of day can be ac-
curately calculated in advance, whereas weather condi-
tions require forecasting.

In our solution, Numerical Weather Prediction (NWP)
data generated by the DWD ICON-EU Forecast model
[5, 6] was utilized to estimate 38 weather conditions in-

cluding temperature, precipitation, wind speed, and air
pressure. This NWP data is suitable for PV forecasting,
even for live inference, since it provides forecasts over
extended time horizons. However, as NWP is derived
from physical models rather than direct measurements,
its accuracy in PV forecasts is limited by spatial and
temporal resolution. Currently, NWP data is available
at hourly intervals at a 5-km resolution, which poses a
challenge for generating precise, site-specific forecasts
at a 5-minute frequency.

Satellite imagery provides information on cloud cover
surrounding the site. However, only historical imagery
can be used to model future cloud cover, and the tra-
jectories of clouds are difficult to predict into the future
and are only available in real-time during a live infer-
ence setting.

The exact spatial orientation and position of clouds
relative to solar sites are critical for PV site-level fore-
casting. Unlike many computer vision tasks where the
presence of a feature matters more than its precise loca-
tion, determining the location of clouds and weather fea-
tures relative to the site is essential. Spatial information
for each pixel of the image was included to counteract
the translation invariance properties of traditional CNN
models, which could otherwise limit the ability of our
model to make effective use of satellite imagery.

Photovoltaic power generation data is used as the re-
gression target for model training. The previous hour of
power generation is known at inference time, to inform
the next four hours of prediction.

We use encodings for features like time of day, day
of year, solar elevation, and azimuth, that respect the
periodicity in these features over time. Additionally,
site-specific metrics like average and maximum monthly
outputs were computed for each site, allowing the model
to learn both site-specific idiosyncrasies and seasonal
PV and solar irradiance trends.

The crops of weather and satellite data used for in-
ference were significantly reduced in size. Smaller crop
sizes reduced ingestion time, model size and inference
time without affecting model performance. Further, us-
ing solar azimuth and elevation data, a method hence-
forth referred to as dynamic cropping, was implemented
to select crops directly in line-of-sight between the sun
and the solar panel site, capturing only the most relevant
regions.

3 Data

3.1 Datasets
The dataset available to the participants of ClimateHack
in the evaluation environment was comprised of several
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modalities, including satellite imagery at various res-
olutions and imaging wavelengths, numerical weather
prediction (NWP) data, site metadata, and historical PV
generation output. The evaluation environment used
data from 993 sites from the year 2022. The same modal-
ities were available to the participants for training, but
the data represented times between January, 2020 to De-
cember, 2021 and covered the same 993 sites.

The PV generation data was collected from live PV
systems across the UK from the years 2018 to 2021. Each
site had a time-series of the average power generated
at the site in watts resampled at 5-minute intervals and
normalized as a proportion of the maximum installed ca-
pacity. This resulted in values between 0 and 1 for all
solar sites provided in the dataset. Each site also had as-
sociated metadata, including its latitude and longitude,
its orientation relative to due north, the tilt of its pan-
els relative to the horizon, and its maximum installed
capacity in kilowatts.

NWP data for the regions surrounding the United
Kingdom were taken from the European Organization
for the Exploitation of Meteorological Satellites (EU-
METSAT). The NWP dataset contained predictions for
38 weather variables, such as wind speeds, air pressure,
temperature, and cloud cover using the DWD ICON-EU
Forecast model [5, 6]. The data presented as a time-series
of multi-channel images, with each channel represent-
ing a weather variable and each pixel having an associ-
ated latitude and longitude coordinate. The NWP data
has approximately 5-kilometer spatial resolution and at
an hourly temporal resolution.

EUMETSAT had also made available satellite images
of the United Kingdom and surrounding regions from
the SEVIRI rapid scanning service dataset [7]. Similar
to the NWP data, the satellite image data was also pre-
sented as a time-series of multi-channel images. The
satellite images were captured at 5-minute intervals. The
data contained one channel of high-resolution visible
(HRV) imagery, which had a spatial resolution of ap-
proximately 1 kilometer. There were also 11 non-high-
resolution visible (non-HRV) channels, which included
visible and infrared wavelenghts. The non-HRV data
had a spatial resolution of approximately 3 kilometers.
All provided satellite imagery data were scaled between
0 and 1.

The dataset for the competition can be accessed
through a Huggingface Datasets repository.

3.2 Data Preprocessing
While the PV generation, HRV satellite, and non-HRV
satellite data have been scaled between 0 and 1, the NWP
data was not. To address scaling, we added a batch norm
layer [8] as the first layer of the model to normalize each

weather feature based on the running statistics of the
dataset.

To encode timestamps, we encoded the time of year
and time of day as separate variables scaled between 0
and 1. The time of year variable was created by dividing
the of the year by 365. The time of day variable was
created by dividing the minute of the day by 1440.

The apparent solar azimuth and apparent solar eleva-
tion variables were computed using the pvlib Python
package over the history and forecast windows for the
location of the solar site. These angles in degrees, along
with the solar site orientation and tilt were scaled be-
tween 0 and 1 by dividing by 360.

We used the cartopy Python package to convert
grids in coordinate systems of the satellite and NWP
data to latitude and longitude. The continuous latitude
and longitude features were processed by further layers
in the models, unscaled.

We also included site-specific statistics computed
over the historical PV generation data from 2018–2021.
We computed the average monthly power output, IQR
for power, average intraday variance, 95th and 99th per-
centile outputs for each site in the dataset.

3.3 Data Splits and Batching

We held out entire days worth of data when construct-
ing the validation dataset. Weather and cloud cover can
change significantly overnight when predictions are not
being made, so data from separate days is less correlated
compared to data from consecutive hours. Creating vali-
dation data from temporally correlated examples would
be less informative of model performance on competi-
tion test data, which was from an entirely different year.
We held out 30% of the days from the training data for
validation.

Creating training batches from data from different
days was not feasible due to the underlying format of
the large dataset being slow to read from disk for ran-
dom points in time. Instead, we chose a random forecast
start time between the hours of 10am to 4pm, using 5-
minute intervals, and loaded data for the entire region
for the corresponding history and forecast window. We
then randomly selected 64 solar sites over the UK for
that timestamp to create a batch. Due to the large num-
ber of possible timestamps and available sites, each con-
secutive batch is still highly random, even though the
items within a batch are temporally correlated.

3

https://huggingface.co/datasets/climatehackai/climatehackai-2023/tree/main


Journal of Computational Vision and Imaging Systems 4

4 Modelling

4.1 SSP Encoding
To encode space and time, we used a technique called
spatial semantic pointers, or SSPs [9]. This method can
encode continuous spatial inputs into vectors whose fea-
tures are random Fourier features [10]. The SSP oper-
ator, ϕ, is parameterized by a phase encoding matrix,
θ ∈ Rdi×de that projects inputs x ∈ Rdi into a phase
vector the size of the encoding dimension, de, as shown
in Equation 1.

ϕ(x|θ) = F−1
{
e2πj(xθ

⊤)
}

(1)

A desirable property of SSPs is that their dot product
similarity is high when input values are spatially close
together. With dot product attention used in transform-
ers, SSPs ensure nearby pixels in both space and time
will have high attention scores. This is especially im-
portant since the data has different spatial and temporal
resolutions, and coordinate systems between modalities
may not align on a perfect grid. Standard methods of en-
suring spatial correlation such as convolution may not
be appropriate for this kind of data.

Because SSP encodings can apply to any continuous-
valued input data, we used them to transform continu-
ous metadata features into d−dimensional vectors. We
applied SSPs to the spatial pixel encoding and all contin-
uous metadata encodings. We used a special formulation
of the θ phase vector for encoding time of day, time of
year, solar elevation and solar azimuth that maintains
their cyclical representations.

4.2 Perceiver Backbone
The backbone of our architecture was based on the
Perceiver transformer architecture [11, 12]. The first
layer of the Perceiver uses a cross-attention layer be-
tween a latent array of random vectors and an input
array. This allows for a long input sequence length to
be compressed into a shorter latent sequence to process
through a deep transformer encoder.

For the transformer encoder backbone, we used a
pre-normalization architecture [13], no bias on any lin-
ear layers, and swish activation function [14] in feed-
forward network (FFN) layers. We used a hidden size
d = 64, 8 attention heads, a FFN expansion factor of 4,
and 20 transformer layers. Overall, the model had 1.1
million parameters.

4.3 Model Input Format
We formatted our latent array to represent the forecast
window and any information relating to the historical

Figure 1: Perceiver architecture diagram.

PV production. We had each sequence element in the
latent array represent a 5-minute interval in the histori-
cal and prediction window. Each element was composed
of a sum of spatial and temporal encodings for the site
over the forecast window, along with the solar positions,
since this is easily computed over the forecast window.
The historical window also included encodings for the
historical PV generation. To this sequence, we concate-
nated encodings of the static site metadata (tilt, orien-
tation, maximum capacity, site PV statistics) and some
random vectors. After all input transformations, the la-
tent array has a shape of 56 × d. The predictions made
on the 48 elements of the final hidden states that repre-
sented the forecast window are used as the model out-
puts. The components of the latent array and its outputs
are shown in Figure 1.

We formatted the input array to represent the larger
image modalities. HRV and NWP data were cropped to
16× 16 pixels and 8× 8 pixels respectively, centered on
the site. A linear projection from the modality channel
dimension to the hidden dimension was then applied.
Each tensor had a per-pixel spatial encoding and a tem-
poral encoding added and broadcasted along the appro-
priate dimensions. The resulting tensors were flattened
and concatenated with representations for the historical
PV and static site metadata as described previously. Af-
ter all input transformations, the input array has a shape
of 3470 × d. The components of the input array are
shown in Figure 1.

Through the construction of the latent and input ar-
rays, the site location and time of forecast serve as
queries against different locations and times from HRV
and NWP data in the input array. This is where the
SSP encodings help attention scores select relevant in-
put pixels for each site and time in the latent array.

4.4 Model Training
The model was implemented using PyTorch. All layers
of the model were trained with the AdamW [15, 16] op-
timizer with β1 = 0.95, β2 = 0.99, λ = 0.001. The
learning rate was scheduled using the OneCycleLR pol-
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(a) MAE by month of year (b) MAE by forecast start time

Figure 2: Best individual model performance on valida-
tion dataset. The red line represents the average error
across all examples.

icy [17] with a peak learning rate of 5e-4 with 30% warm-
up steps and a cosine decay to 1% the peak learning rate.
Training used a batch size of 64 over 15 epochs using L1
loss between the model outputs and regression targets.

5 Results

The best performing individual model had a MAE score
of 0.08253 on the competition test set and a MAE score
of 0.06505 on our validation dataset.

We suspected the model’s performance depends on
the variability of the solar output, so we further exam-
ined our model’s predictions on the validation dataset
during different time periods. Figure 2a shows the mod-
els prediction error is highly variable during the summer
months, where days are longer and the potential for PV
generation is higher. However, the average error was
relatively low during the winter months where PV out-
put was consistently lower. We observed a similar pat-
tern in Figure 2b, where forecast periods that occurred
during midday had a greater variability in error, while
forecast periods that occur during the evening had lower
error as the PV output was nearly zero for most of the
window.

Based on the success of our individual model, we also
tried ensembling variations of this model recipe. We
trained the same model recipe but with different seeds
and a smaller validation set. We also trained models
with data from the summer months, where power pro-
duction was most variable. Our best-performing ensem-
ble model used a weighted average of four models, with
one model from the summer months. This model had
a MAE score of 0.08105 on the competition test set. In
particular, ensembling was possible because an individ-
ual model only had 1.1 million parameters, compared to
other competitors whose models had tens of millions of
parameters each.

For inference metrics, our model completed inference
on 1000 sites in 2.5 seconds on an RTX 3060 GPU. This
is well within the 5-minute run-time required to make
predictions at the required interval.

6 Discussion

Overall, our model achieved the lowest error on the
competition test set, while being one of the smallest
deep learning models presented in the competition. For
reference, the next-best team had a model based on two
ResNeXt-50 [18] that separately processed non-HRV
and NWP data. Their model had a total of more than 50
million parameters and a test set MAE score of 0.08209.
Our ensemble model was 11× smaller and achieved bet-
ter performance.

Further analysis of model outputs revealed that the
model tended to favour smooth predictions of future
power output. This could indicate that the resolution of
available inputs is a limiting factor in the model’s avail-
able to predict short-term fluctuations in power out-
put. We expect the quality of solar power forecasts
to increase greatly with the quality and granularity of
weather models.

During the development of our model and train-
ing pipeline, we found that using small crops and
temporally-correlated batching allowed us to avoid
loading large tensors into memory from disk. Many
competitors experienced challenges loading data fast
enough to efficiently train deep learning models with-
out precomputing all batches.

The most promising avenue for improving accuracy
using existing modelling techniques is the inclusion of
new weather data sources, such as aerosol forecasts.
Aerosols such as smog and dust can block visible light
from reaching the surface of the planet, reducing the po-
tential for solar power generation. Furthermore, other
aerosols can undergo chemical and physical processes
in the atmosphere that can either hinder or facilitate the
formation of clouds. Aerosol forecasts could be used in
a similar manner to NWP data.

For grid scheduling purposes, point forecasts of solar
output do not provide full context for energy systems
operators. If current models could be adapted to pro-
duce probabilistic forecasts to predict a distribution of
possible outcomes, then grid operators could better un-
derstand the likelihood of different solar generation out-
comes. One possible avenue for exploration would be
conformal prediction, a model-agnostic technique that
can be applied in postprocessing to assign prediction in-
tervals to point predictions.
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7 Conclusion
Solar forecasting is a difficult but necessary task to en-
sure a smooth transition to renewable energy produc-
tion. The physics of electricity grids dictate that supply
and demand must be equal, so variability in solar en-
ergy production due to cloud cover and other facts must
be accounted for in grid scheduling. Under the current
paradigm, spinning reserve turbines are used in cases
where solar power generation suddenly drops, produc-
ing carbon emissions that can be mitigated by improved
solar energy forecasts.

Team Waterloo was ultimately awarded the first place
prize in ClimateHack.AI 2023-2024 for their Perceiver-
ensemble solution.
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