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Abstract
Denoising diffusion probabilistic models (DDPMs)
excel in image generation, but users have limited
control over the level of detail and semantic rich-
ness in generated images. Although prompt-based
diffusion models can create more detailed images
with descriptive prompts and utilize spatial masks
to preserve unedited regions, diffusion models fre-
quently overlook these constraints, leading to in-
consistent image regions. Inspired by transformers,
where each feature level encodes varying semantic
information, we propose a feature scaling method
at inference for a ViT-based diffusion model, U-ViT.
Our experiments on CIFAR-10 indicate that this scal-
ing approach effectively adjusts the level of detail in
generated images.

1 Introduction

Denoising diffusion probabilistic models (DDPMs) have
become the focal center in the research landscape due
to their stability during training and superior image
generation capabilities on image, 3D, video data, and
beyond [1]. Compared to previous image generation
frameworks such as variational autoencoders (VAE) [2]
and generative adversarial networks (GAN) [3], diffu-
sion models employ an image generation architecture
involving a forward diffusion process and a reverse
diffusion process. In the forward process, Gaussian
noises are added to realistic sample images until the
images become complete Gaussian noise. A neural
network is trained in the reverse process to denoise at
each step to map the Gaussian noise to the input sample.

However, controlling the level of detail in images gen-
erated by diffusion models is challenging. Some address
this by re-generating images, but diffusion models are
also notorious for incredibly slow image generation at

inference due to the need to traverse the denoising re-
verse diffusion chain, which involves going through the
same network hundreds or even thousands of times [4].
Conversely, prompt-based diffusion models can add de-
tail using descriptive prompts and utilize spatial masks
to preserve unedited areas. However, diffusion models
frequently overlook these masked constraints, leading
to inconsistent regions in generated images.

To enable control over fine-grained detail in gener-
ated images, we propose scaled skip connections for dif-
fusion models at inference, a simple yet effective method
that may shed light on how we can control level of de-
tails in image generation for diffusion models.This ap-
proach applies scale factors to the skip connections that
introduce high-frequency information between shallow
and deep feature layers, enabling us to adjust detail lev-
els in the generated images. Applying this method to
the CIFAR-100 dataset, we found that scaling skip con-
nections can effectively modify the semantic content of
generated images.
Our contributions are summarized below:

• To introduce high-frequency information in differ-
ent feature levels in transformers-based architec-
ture, we adapted scale factors from U-Net based
DDPM [5] to U-ViT architecture [6] 1 of the same
size.

• With no additional training, we can adjust the
level of details in image generation at inference
by weighing the feature maps in the denoising
blocks and skip connections, as each component
contributes to different levels of fine-grained detail
during image generation.

2 Background
Denoising diffusion probabilistic models (DDPMs)
are generative models typically used for image syn-

1As U-ViT outperforms the CNN based denoiser backbones while
using less training data [6], we conducted our experiments using ViT
based backbone
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thesis. These models learn a conditional transition
from pure Gaussian noise to examples in the image
domain. They are a competitive method compared to
Generative-Adversarial Networks (GANs) and Vari-
ational Autoencoders (VAEs), as DDPMs have been
shown to generate higher quality images compared
to VAEs, while not suffering the same instabilities
encountered when training GANs [7].

To train DDPMs, a forward process is applied where
noise is added iteratively to an input sample (usually an
image) x0 using a Markov Chain until it is no longer
distinguishable from pure noise xT ∼ N (0, I). To
recover the original image, a neural network is trained
to sequentially predict the noise and remove it from the
image using the same network. Effectively, this process
parameterizes the reverse diffusion process by learning
an adequate sequence of conditional distributions that
lead to the distribution of the original data.

Typically, U-Net is the neural network architecture
leveraged to predict and remove noise from images.
U-Net is a convolutional network identified by its
encoder-decoder architecture and its skip connections.
Specifically, the encoder block downsamples the input
image, effectively capturing its high-level semantics.
The decoder is then tasked with upsampling the rep-
resentation and returns the original dimensionality of
the input. To assist with the recovery of fine-grained
low-level details lost in the downsampling step, long
skip connections from the encoder are concatenated
with the denoising decoder features. This also stabi-
lizes training by alleviating the vanishing gradient issue.

Building on this work, Latent Diffusion Models
(LDMs) [8], embed the U-Net into the latent space of
a pre-trained AutoEncoder (AE). This shift to a lower-
dimensional latent space means that latent diffusion
models (LDMs) need significantly less computation and
time to generate images. The AE allows for modelling
more complex statistics of the data, further improving
image quality generation. Beyond this, the latent space
enables cross-modality encoding, allowing for class and
text conditioning of the outputs. This is is shown in
Figure 1.

Drawing inspiration from the original U-Net, Bao et
al. pushes further in the direction of less reliance on
the U-Net by proposing U-ViT, a transformer based de-
noising backbone with long skip connections between
the shallow and deep layers [6]. By employing these
long skip connections, low level feature information
is able to propagate through the transformer layers of

Figure 1: Trainingmechanism of a Latent Diffusion
Model. We can see that the input and output use an
AutoEncoder to go to and from a latent space, where
the diffusion process is applied. Optionally, the reverse
process can leverage multi-modal conditioning in this
joint latent space using pre-trained frozen encoders

Figure 2: Modulating factors proposed in FreeU [9]

the denoising U-ViT, easing the pixel-level prediction
objective in diffusion models.

In FreeU [9], the authors employ a study of the
U-Net architecture and point out the significance of the
information propagated through the denoising blocks
and the long skip connections [9]. They note that
the denoising block contributes to the generation of
high-level (low frequency) components of the generated
samples, where these generated features embody the
global/smooth characteristics of an image. Conversely,
the skip connections carry over the low-level (high-
frequency) information to later layers for denoising -
once the global features of the image have already been
resolved. Equipped with this knowledge, the authors
propose a method that, when applied during inference,
can lead to improved image generation quality with no
addition of any trainable parameters. They introduce
two modulating factors for the skip connections and
denoising blocks, depicted in Figure 2. The first is used
to downscale the low frequency information present
in skip connections, as the authors argue that low
frequency present in the skip connection features may
be attenuating the efficacy of the denoising blocks. Due
to this removal of low frequency information from the
reverse diffusion process, the second factor is employed
to upscale the denoising decoder blocks.
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Figure 3: Our method. As shown in the dark blue rect-
angles, we scaled the skip connections and backbone
features at inference for the U-ViT architecture

3 Methodology
Our method adapts modulating factors for skip connec-
tions and denoising blocks from UNet-based Diffusion
models to ViT-based diffusion models. By using a
ViT-based LDM, we can effectively adjust the high-
frequency and low-frequency information in shallow
and deep layers of ViT during the diffusion process to
edit the semantic richness of generated images. First,
we apply a high pass filter to the skip connection fea-
tures. To do this, we compute the Fourier Transformer
of the content of the skip connection hl to obtain the
frequency information, where l is outlines the layer
in question. Because the rationale for using skip con-
nections at inference time is to supply the later layers
with high-frequency information, we downscale all
features below some threshold value rthresh by a factor sl.

h′
l = IFFT(FFT(hl)⊙ βl) (1)

βl(r) =

{
sl, if r < rthresh

1, otherwise
(2)

To make up for lost information in the skip connec-
tion filtering, we amplify the scaling of the denoiser
transformer blocks concatenated with the skip connec-
tions. Because we’re working with a vision transformer,
the features propagated through the network are not
output maps from convolutional kernels, but rather
fixed-sized patches. Furthermore, the U-ViT model
appends time and class conditioning tokens to the

network as patches for simplicity. To deal with this, we
omit these first 2 tokens from the scaling operation. We
then determine the scaling factor αl using a normalized
average of the features of the transformer block and βl.

x̄l =
1

N

N∑
i=1

xl,i (3)

αl = (bl − 1) · x̄l −min(x̄l)

max(x̄l)−min(x̄l)
+ 1 (4)

x′
l,i = xl,i ⊙ αl (5)

4 Result
The experimental results reveal an interplay between
two key parameters, s and b, within the model. Notably,
when s is systematically decreased while maintaining
b at a constant level, there is an increase in semantic
information of the generated image. As seen in Figure
4b), there are more details on the face of the arctic fox
as well as the background of the parrot. This trend
suggests that reducing the scaling factor s indepen-
dently (i.e. significant filtering out of lower frequency
information in the skip connections) accentuates the
high-level features and introduces more details into the
generated images.

a) Unchanged skip connections, b = 1, s = 1

b) Scaled skip features, b = 1, s = 0.8

c) Scaled backbone features, b = 1.3 , s = 1

Figure 4: Qualitative Result: Influence of parame-
ters b and s on image synthesis. Scaling down the
skip feature provided richer semantic information, as
seen in the detailed trees behind the parrot and the de-
tails on the hot air balloons. Similarly, scaling up the
backbone feature provided more vibrant colors of the
parrot and more details on the face of the arctic fox.

Conversely, when b is increased (more denoising per
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step) while s is held constant, an interesting pattern
emerges. Initially, the results show an improvement
in image quality, suggesting that higher values of b

contribute to generating sharper and more defined
images. However, beyond a certain threshold, the
images become excessively sharp, potentially at the cost
of losing essential details. This observation highlights
the balance required when tuning the b parameter, as
high values compromise the quality of the generated
images.

In addition, understanding the distinct roles played
by skip connections versus denoising blocks here seems
to be important. Skip connections and denoising blocks
constitute integral components influencing the model’s
ability to capture both high and low-frequency informa-
tion during the denoising process. While skip connec-
tions contribute to the propagation of low-level details
and facilitate the recovery of fine-grained features, de-
noising blocks play a crucial role in synthesizing high-
level, global characteristics of the generated images. The
delicate interplay between these components is essential
for achieving a balance between sharpness, quality, and
the preservation of details. Further exploration into the
interactions and individual contributions of skip con-
nections and denoising blocks may contain the potential
to fine-tune their functionalities and enhance the gener-
ated images.

5 Discussions

Our preliminary results suggest that scaling feature con-
nections holds promise for controlling detail levels in
image generation. Further work is needed to confirm
our observation. For example, the next step includes cal-
culating the Fréchet Inception Distance (FiD) as a quan-
titative metric for evaluation.
Future direction involves extending the applicability of
these scaling factors to the training phase. Specifically,
during training, the skip connections currently utilize
a downscaling operation on frequencies below a pre-
defined threshold. However, we can replace this fixed
downscaling with a dynamically learned low-pass fil-
ter, potentially leveraging mathematical models such as
Tschebyscheff [10] or Butterworth [11]. This adaptive
approach could optimize the model’s ability to capture
relevant frequency information, offering a trainable re-
finement to the denoising process.
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