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Abstract

Breast Magnetic Resonance Imaging (MRI) is a reliable imaging
tool for localization and evaluation of lesions prior to breast con-
serving surgery (BCS). MR images typically will be used to deter-
mine the size and location of the tumours before making the inci-
sion in order to minimize the amount of tissue excised.

The arm position and configuration of the breast during and
prior to surgery are different and one question is whether it would
be possible to match the two configurations. This matching process
can potentially be used in development of tools to guide surgeons
in the incision process.

Recently, a Thin-Plate-Spline (TPS) algorithm has been pro-
posed to assess the feasibility of breast tissue matching using fidu-
cial surface markers in two different arm positions. The registration
algorithm uses the surface markers only and does not employ the
image intensities.

In this manuscript, we apply and evaluate a coherent point drift
(CPD) algorithm for registration of three-dimensional breast MR im-
ages of six patient volunteers. In particular, we evaluate the results
of the previous TPS registration technique to the proposed rigid
CPD, affine CPD, and deformable CPD registration algorithms on
the same patient datasets.

The preliminary results suggest that the CPD deformable reg-
istration algorithm is superior in correcting the motion of the breast
compared to CPD rigid, affine and TPS registration algorithms.
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1 Introduction

Breast Magnetic Resonance Imaging (MRI) is a reliable imaging
tool for localization and evaluation of lesions prior to breast con-
serving surgery (BCS).

Usually, breast MRI is performed in the prone position, where
the breasts are pendant into the imaging coils to overcome motion
artifacts from respiration thereby providing high resolution imaging.
However in this configuration, the breast shape is different com-
pared to the actual configuration in the operating room table [3].
A goal is to develop a computer assisted surgery (CAS) tool by
assigning correspondences between two configurations to recover
the transformation that maps one to the other. The results in [3]
are based on matching of two configurations, namely supine arm
up and supine arm down positions. Specifically, the scheme ap-
plies fiducial surface markers in these two different arm positions
that describe the breast surface. The registration algorithm uses
the surface markers only and does not employ the image intensi-
ties. The aim of the algorithm is to find the correspondence be-
tween the markers as well as the transformation that matches one
configuration to the other.

Many algorithms exist for rigid and non-rigid alignment of point
sets and images [4]. For instance, iterative Closest Point (ICP) al-
gorithm, [2, 9], is one of the most popular methods for rigid point
point set registration due to its simplicity and low computational
complexity. ICP iteratively assigns correspondences based on a
closest distance criterion and finds the least-squares rigid transfor-
mation relating the two point sets.

In this paper, we apply a probabilistic method, called the Co-
herent Point Drift (CPD), introduced by Myronenko et al. [5], for
rigid, affine and deformable point set registration on the three-
dimensional (3D) breast MRI datasets of six patient volunteers in [3].
We then determine the accuracy of the three CPD registration al-
gorithms and provide a comparison between these and the TPS
algorithm [3].

2 Materials and methods

2.1 Data

Table 1 presents the characteristics of patient datasets in [3]. Pa-
tient no. 5 was coughing throughout the scanning procedure lead-
ing to unacceptably poor quality images in which it was impossible
to delineate the tumour; the data from this patient is therefore not
included in the study.

Table 1: Characteristics of patient datasets

Patient Matrix size Field of view Tumor size arm down Tumor size arm up
ID (mm3) (cm3) (cm3)

1 256×256×66 180×180×79 16.8±0.4 18.0±1.1
2 256×256×56 180×180×84 5.3±0.7 6.9±1.0
3 256×256×66 180×180×79 80.5±4.1 73.8±1.6
4 256×256×72 180×180×86 2.4±0.1 2.4±0.4
6 256×256×46 180×180×55 1.9±0.2 1.5±0.2

2.2 Coherent Point Drift (CPD) registration algorithm

In this section, a brief description of the CPD landmark-based reg-
istration is presented. Originally introduced by Myronenko et al. [5]
the method begins by constructing an equally weighted Gaussian
Mixture Model where D-dimensional centroids are determined by
a template point set Y = (y1, ...,yM)T , a reference point set X =
(x1, ...,xN)

T , form the data points and the covariance is taken to be
uniform and isotropic. This gives a probability density of p(x) =
∑

M
m=1

1
M p(x|m), where x|m ∼ N (ym,σ

2ID). Note that X and Y can
be thought of as M×D and N×D matrices. A continuous velocity
field v for the template set is defined so that Y = v(Y0)+Y0 where Y0
is the set of initial centroid positions. For this implementation, the
degree of smoothness of v is characterized by its power spectrum
and in particular,

φ(v) =
∫

Rd

|ṽ(s)|2

G̃(s)
ds (1)

where the over-tilde indicates the Fourier transform and G̃ is a sym-
metric low-pass filter. In practice, one chooses G to be a Guassian
kernal because it is symmetric and positive definite and moreover,
G̃ also has a Gaussian form and approaches zero as ‖s‖→ ∞.

Taking in all these considerations Bayes theorem can be used
to find the parameters Y by maximizing the posteriori probability
under the prior p(Y |λ ) ∝ exp(− λ

2 φ(Y )). Focussing instead of the
action of the map v, one is tasked with minimizing the energy func-
tion
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The function which minimizes the energy function in above has the
form of the radial basis function [6]
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∑
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wmG(z− y0m). (3)

Substituting the solution obtained in (3) back into (2), we obtain
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where GM×M is a square symmetric with elements gi j = e−
1
2 ||

y0i−y0 j
β
||2

and WM×D =(w1, ...,wM)T is a matrix of the Gaussian kernel weights.
For details on optimizing E(W ), please refer to [6].



The matching procedure required a set of parameters. We
manually tuned the parameters (Table 2) for the algorithm to yield
satisfactory matching of the markers in the volunteer dataset. For
a detailed description of each parameter see [5].

Table 2: The CPD algorithm parameters

Symbol Definition Number

N number of effective eigenvectors 40
β width of Gaussian distribution 3
λ regularization weight 28
w noise weight 0.1
fgt Fast Gauss Transform 2

corresp compute correspondence vector at the end of registration 300
tol tolerance 1e-6

“There are three free parameters in the method: α,β ,σ . Pa-
rameter α represents the trade-off between data fitting and smooth-
ness regularization. Parameter β reflects the strength of interac-
tion between points. The value of σ serves as a capture range
for each Gaussian mixture component. Deterministic annealing for
σ is used, starting with a large value σ and gradually reducing
it according to σ = ασ , where σ is annealing rate (normally be-
tween [0.920.98]), so that the annealing process is slow enough for
the algorithm to be robust. The gradual reducing of σ leads to a
coarse-to-fine matching strategy” [5].

2.3 Marker selection and matching

The position of the MR-visible markers in the two arm-up and arm-
down images for each patient were semi-manually selected and
computed using a GUI tool that was developed in house [3]. The
CPD registration [5] was then employed to match the markers for
rigid, affine, and deformable transformations.

2.4 Tumor segmentation

Three independent observers, all of whom were experienced in
looking at breast MR images, segmented the tumours of each of
the patients using TurtleSeg (Interactive 3D Image Segmentation
Software) [7] that provides a semi-manual tool for segmentation
[3].

“Here, we present data for five of the patients from the study
named as patient 1,2,3,4, and 6 and the number of markers which
we use for arm up, arm down positions in all of 5 patient datasets
are 34 and 33, respectively. The tumour of patient no. 3 could not be
reliably identified and segmented even with the help of a radiologist
therefore we segmented an enhancing cyst that was clearly visible
in the images instead. Also, the attachment of the surface marker
has caused a local distortion of the skin surface for patient no. 4"
[3].

3 Result

We computed the Dice measure of overlap between the tumour in
the reference and the registered arm up images presented in Table
3. In addition, we computed the Centre of Mass (COM) of the tu-
mours and evaluated the Euclidean distance between the tumours
in the reference and arm up images; this is defined as the COM-
displacement Table 4.
The focus of this study is the matching of supine breast datasets
which were acquired with two different arm positions using the CPD
algorithm and the positions of surface markers. Our goal was to lo-
calize the tumour using the described scheme. We used manual
segmentations of the lesions to assess the Dice overlap and COM-
displacement metrics.

Based on the results presented in Tables 3 and 4, it can be
recognized that the deformable CPD point sets registration Dice
scores were generally superior than the CPD rigid and affine ex-
cept in patient 4 and 6. It can be observed that Dice measure of pa-
tient 4 was not consistent with the other patients in Table 3. These
could be due to several factors. The initial unregistered arm-up and
down positions have a displacement of 46 mm which is the largest
among all of the patients in the study. Also, due to a miscommuni-
cation problem in placing the markers, only one side of the breast
was covered by the markers for patient 6 ” [3]. In addition, the
tumour is close to the COM of the markers and as expected CPD

rigid gave the best results compared to CPD deformable, affine and
TPS for patient 6. As we expected, the result of the experiments
vary based on the tumour size, shape, and location.

Table 3 evaluates the Dice measures of tumour overlap, and
Table 4 indicates COM-displacement of tumours in millimeters be-
fore and after registration. Three values in each cell represent
the values calculated based on each of the three independent tu-
mour segmentations. The maximum possible number of available
matched markers have been used for each patient. In Figure 1, the
result of the 3 different registration schemes for the first patient can
be observed.

Table 3: Dice score(%)

Patient Unregistered TPS CPD-rigid CPD-affine CPD-deformable
ID registered registered registered registered

1 (A) 28 (A) 77 (A) 65 (A) 76 (A) 78
(B) 24 (B) 79 (B) 67 (B) 81 (B) 83
(C) 20 (C) 74 (C) 64 (C) 76 (C) 79

2 (A) 0 (A) 75 (A) 60 (A) 72 (A) 75
(B) 0 (B) 63 (B) 53 (B) 60 (B) 64
(C) 0 (C) 57 (C) 52 (C) 59 (C) 64

3 (A) 26 (A) 75 (A) 79 (A) 75 (A) 85
(B) 23 (B) 74 (B) 79 (B) 73 (B) 84
(C) 28 (C) 77 (C) 79 (C) 76 (C) 83

4 (A) 0 (A) 20 (A) 0 (A) 20 (A) 0
(B) 0 (B) 23 (B) 0 (B) 19 (B) 0
(C) 0 (C) 21 (C) 0 (C) 25 (C) 0

6 (A) 6 (A) 61 (A) 81 (A) 70 (A) 72
(B) 10 (B) 59 (B) 81 (B) 69 (B) 71
(C) 6 (C) 59 (C) 79 (C) 70 (C) 73

Table 4: COM-displacement (mm)

Patient Unregistered TPS CPD-rigid CPD-affine CPD-deformable
ID registered registered registered registered

1 (A) 17.5 (A) 2.7 (A) 6.5 (A) 3.2 (A) 2.5
(B) 18.5 (B) 3.0 (B) 6.5 (B) 3.1 (B) 2.5
(C) 19.5 (C) 4.0 (C) 7.4 (C) 4.1 (C) 3.6

2 (A) 33.0 (A) 0.9 (A) 6.2 (A) 2.8 (A) 3.1
(B) 33.1 (B) 1.5 (B) 7.3 (B) 2.8 (B) 3.6
(C) 32.0 (C) 2.2 (C) 7.3 (C) 2.4 (C) 2.5

3 (A) 31.6 (A) 9.0 (A) 4.7 (A) 9.8 (A) 4.0
(B) 32.2 (B) 9.3 (B) 4.8 (B) 10.3 (B) 4.1
(C) 30.3 (C) 7.9 (C) 4.5 (C) 9.0 (C) 4.2

4 (A) 46.8 (A) 8.5 (A) 21.0 (A) 10.6 (A) 17.6
(B) 46.7 (B) 8.3 (B) 23.7 (B) 10.2 (B) 19.6
(C) 46.1 (C) 8.5 (C) 21.0 (C) 10.0 (C) 17.7

6 (A) 11.0 (A) 3.9 (A) 1.2 (A) 2.8 (A) 2.5
(B) 10.9 (B) 4.2 (B) 1.2 (B) 3.0 (B) 2.6
(C) 11.2 (C) 5.2 (C) 3.4 (C) 2.3 (C) 2.4



(a) Reference (arm parallel) (b) Segmented tumour in reference

(c) Template (arm up) (d) Template overlay on reference

(e) Rigid registered template (f) Rigid registered overlay

(g) Affine registered template (h) Affine registered overlay

(i) Deformable registered template (j) Deformable registered overlay

Fig. 1: The CPD registration for patient 1; Slice 34 of the 3D volume
is shown.

4 Conclusion

The experimental results suggest that the deformable CPD regis-
tration of 3D breast MRI can perform more accurately compared to
the rigid, affine and TPS registration methods. In general, the mo-
tion of the breast is nonrigid so that rigid or affine transformations
are not sufficient enough to describe the motion. These prelimi-

nary results also demonstrate that in general the experiments are
affected by the tumour size, shape, and location.

The CPD registration results reported in this paper took 0.4 to
0.6 seconds of CPU time on a standard PC running Matlab, which
is significantly lower than the computation time using TPS (under a
minute) reported in [3] .

In order to further assess the feasibility of the registration ap-
proach in a surgical setting, more volunteer patient datasets with
tumours will be required.

Acknowledgments

This research was supported in part by an NSERC (Natural Sci-
ences and Engineering Research Council of Canada) Discovery
Grant for ME. The authors would like to thank Dr. Anne Martel
(Sunnybrook Research Institute, Toronto, Ontario, Canada) for pro-
viding the volunteer patient datasets.

References

[1] Beatty, J David and Porter, Bruce A, Contrast-enhanced
breast magnetic resonance imaging: the surgical perspective,
The American journal of surgery, 193, 5, 600–605, (2007), El-
sevier.

[2] Besl, Paul J. and McKay, Neil D., Method for registra-
tion of 3-D shapes, Proc. SPIE, 1611, 586-606, (1992),
10.1117/12.57955, http://dx.doi.org/10.1117/12.57955.

[3] Ebrahimi, Mehran and Siegler, Peter and Modhafar, Amen
and Holloway, Claire MB and Plewes, Donald B and Martel,
Anne L, Physics in medicine and biology, 59, 7, 1589, (2014),
IOP Publishing

[4] Modersitzki, Jan, FAIR: flexible algorithms for image registra-
tion, 6, (2009),SIAM.

[5] Myronenko, Andriy and Song, Xubo, Point set registration:
Coherent point drift, IEEE transactions on pattern analysis
and machine intelligence, 32, 12, 2262–2275, (2010), IEEE.

[6] Myronenko, Andriy, Xubo Song, and Miguel A. Carreira-
Perpinán, Non-rigid point set registration: Coherent point drift,
Advances in Neural Information Processing Systems, 1009–
1016, (2006).

[7] Top, Andrew and Hamarneh, Ghassan and Abugharbieh,
Rafeef, Active learning for interactive 3D image segmentation,
International Conference on Medical Image Computing and
Computer-Assisted Intervention, 603–610, (2010), Springer.

[8] Wahba, Grace, Spline models for observational data, 59,
(1990), SIAM.

[9] Zhang, Zhengyou, Iterative point matching for registration
of free-form curves and surfaces, 13, 2, 119–152, (1994),
Springer.


