The Efficacy of Combination Therapy Using Atropine and Orthokeratology in Limiting Myopia Progression in Comparison to Atropine and Orthokeratology Monotherapy—A Systematic Review

Authors

  • Muhammad Qasim University of Minho Portugal
  • Malab Sana Balouch Imperial College Charing Cross Hospital London
  • Muhammad Shahbaz Optika 1 Tirana Albania
  • Jorge Jorge Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), School of Sciences, University of Minho, Braga, Portugal
  • Paulo Fernandes Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), School of Sciences, University of Minho, Braga, Portugal

DOI:

https://doi.org/10.15353/cjo.v87i1.6103

Keywords:

Myopia Management, Atropine, Orthokeratology, Combination Therapy

Abstract

 

Myopia a growing global public health issue, particularly amongst children and adolescents raised the issues of addressing not only the diseases up-going trend but also its management effectiveness. This review article is meant to evaluate the efficacy of combination therapy using atropine and orthokeratology in limiting myopia progression in comparison to atropine and orthokeratology monotherapy. In this study, we accessed PubMed, Web of Science and other databases to search for the articles address the effectiveness of combined therapy in myopia management rather than its monotherapy. Data was collected systematically from 8 studies on combination therapy, 6 on Orthokeratology alone, and 6 on Atropine monotherapy focusing changes in axial length of the individuals underwent the prescribed therapies. Statistical analysis was done using Python, Pandas Scikit Learn, SciPy & MatPlotLib for data visualization, accuracy and efficiency to get valid test results.

This review article study revealed that combination therapy resulted in a mean reduction in axial length of 0.10 mm to 0.28 mm, significantly outperforming Atropine monotherapy (0.02 mm to 0.87 mm) and Orthokeratology alone (0.19 mm to 0.36 mm). The combination therapy demonstrated large effect sizes (Cohen’s d of 1.59 and 1.95) compared to individual treatments indicating a synergistic effect. However, variability in study designs and the limited availability of long-term data reinforces the need for further research. This review highlights the potential of combination therapy as a superior approach to myopia management, advocating for its consideration in clinical practice to mitigate the growing burden of myopia

Keywords: Myopia Management, Atropine, Orthokeratology, Combination Therapy, Review                                                                                                                             

References

1 Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. The Risks and Benefits of Myopia Control. Ophthalmology 2021;128:1561–79. https://doi.org/10.1016/J.OPHTHA.2021.04.032.

2 Theophanous C, Modjtahedi BS, Batech M, Marlin DS, Luong TQ, Fong DS. Myopia prevalence and risk factors in children. Clin Ophthalmol 2018;12:1581–7. https://doi.org/10.2147/OPTH.S164641.

3 Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016;123:1036–42. https://doi.org/10.1016/J.OPHTHA.2016.01.006.

4 Dolgin E. The myopia boom. Nature 2015;519:276–8. https://doi.org/10.1038/519276A.

5 Williams KM, Verhoeven VJM, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GHS, et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium. Eur J Epidemiol 2015;30:305–15. https://doi.org/10.1007/S10654-015-0010-0.

6 Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, et al. Impact of family history of high myopia on level and onset of myopia. Invest Ophthalmol Vis Sci 2004;45:3446–52. https://doi.org/10.1167/IOVS.03-1058.

7 Zhang X, Qu X, Zhou X. Association between parental myopia and the risk of myopia in a child. Exp Ther Med 2015;9:2420. https://doi.org/10.3892/ETM.2015.2415.

8 Bullimore MA, Brennan NA. Myopia Control: Why Each Diopter Matters. Optom Vis Sci 2019;96:463–5. https://doi.org/10.1097/OPX.0000000000001367.

9 Chamberlain P, Peixoto-De-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom Vis Sci 2019;96:556–67. https://doi.org/10.1097/OPX.0000000000001410.

10 Hasebe S, Ohtsuki H, Nonaka T, Nakatsuka C, Miyata M, Hamasaki I, et al. Effect of progressive addition lenses on myopia progression in Japanese children: a prospective, randomized, double-masked, crossover trial. Invest Ophthalmol Vis Sci 2008;49:2781–9. https://doi.org/10.1167/IOVS.07-0385.

11 Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol 2009;93:997–1000. https://doi.org/10.1136/BJO.2008.150979.

12 Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 2016;123:697–708. https://doi.org/10.1016/J.OPHTHA.2015.11.010.

13 Shih YF, Chen CH, Chou AC, Ho TC, Lin LLK, Hung PT. Effects of different concentrations of atropine on controlling myopia in myopic children. J Ocul Pharmacol Ther 1999;15:85–90. https://doi.org/10.1089/JOP.1999.15.85.

14 Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R. Myopia Control with Orthokeratology Contact Lenses in Spain: Refractive and Biometric Changes. Invest Ophthalmol Vis Sci 2012;53:5060–5. https://doi.org/10.1167/IOVS.11-8005.

15 Chen C, Cheung SW, Cho P. Myopia Control Using Toric Orthokeratology (TO-SEE Study). Invest Ophthalmol Vis Sci 2013;54:6510–7. https://doi.org/10.1167/IOVS.13-12527.

16 Lakstygal AM, Kolesnikova TO, Khatsko SL, Zabegalov KN, Volgin AD, Demin KA, et al. DARK Classics in Chemical Neuroscience: Atropine, Scopolamine, and Other Anticholinergic Deliriant Hallucinogens. ACS Chem Neurosci 2019;10:2144–59. https://doi.org/10.1021/ACSCHEMNEURO.8B00615.

17 Upadhyay A, Beuerman RW. Biological Mechanisms of Atropine Control of Myopia. Eye Contact Lens 2020;46:129–35. https://doi.org/10.1097/ICL.0000000000000677.

18 Barathi VA, Weon SR, Beuerman RW. Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation. Mol Vis 2009;15:1277.

19 Muscarinic receptor subtypes in human iris-ciliary body measured by immunoprecipitation - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/9191607/ (accessed August 22, 2024).

20 Ford KJ, Feller MB. Assembly and disassembly of a retinal cholinergic network. Vis Neurosci 2012;29:61. https://doi.org/10.1017/S0952523811000216.

21 Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, et al. Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci 2018;59:2778–91. https://doi.org/10.1167/IOVS.17-22562.

22 Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, Ho C, et al. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res 2014;13:4647–58. https://doi.org/10.1021/PR500558Y.

23 Vincent SJ, Cho P, Chan KY, Fadel D, Ghorbani-Mojarrad N, González-Méijome JM, et al. CLEAR - Orthokeratology. Cont Lens Anterior Eye 2021;44:240–69. https://doi.org/10.1016/J.CLAE.2021.02.003.

24 Nichols JJ, Marsich MM, Nguyen M, Barr JT, Bullimore MA. Overnight orthokeratology. Optom Vis Sci 2000;77:252–9. https://doi.org/10.1097/00006324-200005000-00012.

25 Liu YM, Xie P. The Safety of Orthokeratology--A Systematic Review. Eye Contact Lens 2016;42:35–42. https://doi.org/10.1097/ICL.0000000000000219.

26 Nti AN, Berntsen DA. Optical changes and visual performance with orthokeratology. Clin Exp Optom 2020;103:44–54. https://doi.org/10.1111/CXO.12947.

27 Kubota R, Joshi NR, Fitzgerald TJ, Samandarova I, Oliva M, Selenow A, et al. Biometric and refractive changes following the monocular application of peripheral myopic defocus using a novel augmented-reality optical system in adults. Sci Rep 2022;12. https://doi.org/10.1038/S41598-022-15456-4.

28 Tang K, Si J, Wang X, Lu X, Bi H. Orthokeratology for Slowing Myopia Progression in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eye Contact Lens 2023;49:404–10. https://doi.org/10.1097/ICL.0000000000001006.

29 Bullimore MA, Mirsayafov DS, Khurai AR, Kononov LB, Asatrian SP, Shmakov AN, et al. Pediatric Microbial Keratitis with Overnight Orthokeratology in Russia. Eye Contact Lens 2021;47:420–5. https://doi.org/10.1097/ICL.0000000000000801.

30 Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology 2006;113:2285–91. https://doi.org/10.1016/J.OPHTHA.2006.05.062.

31 Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012;119:347–54. https://doi.org/10.1016/J.OPHTHA.2011.07.031.

32 Chia A, Lu QS, Tan D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 2016;123:391–9. https://doi.org/10.1016/J.OPHTHA.2015.07.004.

33 Tan DTH, Lam DS, Chua WH, Shu-Ping DF, Crockett RS. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology 2005;112:84–91. https://doi.org/10.1016/J.OPHTHA.2004.06.038.

34 Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 2019;126:113–24. https://doi.org/10.1016/J.OPHTHA.2018.05.029.

35 Yam JC, Li FF, Zhang X, Tang SM, Yip BHK, Kam KW, et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology 2020;127:910–9. https://doi.org/10.1016/J.OPHTHA.2019.12.011.

36 Yam JC, Zhang XJ, Zhang Y, Wang YM, Tang SM, Li FF, et al. Three-Year Clinical Trial of Low-Concentration Atropine for Myopia Progression (LAMP) Study: Continued Versus Washout: Phase 3 Report. Ophthalmology 2022;129:308–21. https://doi.org/10.1016/J.OPHTHA.2021.10.002.

37 Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 2005;30:71–80. https://doi.org/10.1080/02713680590907256.

38 Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012;53:7077–85. https://doi.org/10.1167/IOVS.12-10565.

39 Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci 2013;90:530–9. https://doi.org/10.1097/OPX.0B013E318293657D.

40 Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-Term Effect of Overnight Orthokeratology on Axial Length Elongation in Childhood Myopia: A 5-Year Follow-Up Study. Invest Ophthalmol Vis Sci 2012;53:3913–9. https://doi.org/10.1167/IOVS.11-8453.

41 Jakobsen TM, Møller F. Control of myopia using orthokeratology lenses in Scandinavian children aged 6 to 12 years. Eighteen-month data from the Danish Randomized Study: Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses (CONTROL study). Acta Ophthalmol 2022;100:175–82. https://doi.org/10.1111/AOS.14911.

42 Kinoshita N, Konno Y, Hamada N, Kanda Y, Shimmura-Tomita M, Kakehashi A. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Jpn J Ophthalmol 2018;62:544–53. https://doi.org/10.1007/S10384-018-0608-3.

43 Tan Q, Ng A, Cheng G, … VW-C eye, 2019 undefined. Combined atropine with orthokeratology for myopia control: study design and preliminary results. Taylor & Francis n.d.

44 Chen Z, Huang S, Zhou J, Xiaomei Q, Zhou X, Xue F. Adjunctive effect of orthokeratology and low dose atropine on axial elongation in fast-progressing myopic children-A preliminary retrospective study. Cont Lens Anterior Eye 2019;42:439–42. https://doi.org/10.1016/J.CLAE.2018.10.026.

45 Vincent SJ, Tan Q, Ng ALK, Cheng GPM, Woo VCP, Cho P. Higher order aberrations and axial elongation in combined 0.01% atropine with orthokeratology for myopia control. Ophthalmic Physiol Opt 2020;40:728–37. https://doi.org/10.1111/OPO.12730.

46 Yu S, Du L, Ji N, Li B, Pang X, li X, et al. Combination of orthokeratology lens with 0.01% atropine in slowing axial elongation in children with myopia: a randomized double-blinded clinical trial. BMC Ophthalmol 2022;22. https://doi.org/10.1186/S12886-022-02635-0.

47 Du L, Chen J, Ding L, Wang J, Yang J, Xie H, et al. Add-On Effect of 0.01% Atropine in Orthokeratology Wearers for Myopia Control in Children: A 2-Year Retrospective Study. Ophthalmol Ther 2023;12:2557–68. https://doi.org/10.1007/S40123-023-00755-4.

48 Tang T, Lu Y, Li X, Zhao H, Wang K, Li Y, et al. Comparison of the long-term effects of atropine in combination with Orthokeratology and defocus incorporated multiple segment lenses for myopia control in Chinese children and adolescents. Eye (Lond) 2024;38:1660–7. https://doi.org/10.1038/S41433-024-02987-5.

49 Li B, Yu S, Gao S, Sun G, Pang X, Li X, et al. Effect of 0.01% atropine combined with orthokeratology lens on axial elongation: a 2-year randomized, double-masked, placebo-controlled, cross-over trial. Front Med (Lausanne) 2024;11. https://doi.org/10.3389/FMED.2024.1358046.

50 Zhao C, Cai C, Ding Q, Dai H. Efficacy and safety of atropine to control myopia progression: a systematic review and meta-analysis. BMC Ophthalmol 2020;20. https://doi.org/10.1186/S12886-020-01746-W.

51 Hiraoka T, Matsumura S, Hori Y, Kamiya K, Miyata K, Oshika T. Incidence of microbial keratitis associated with overnight orthokeratology: a multicenter collaborative study. Jpn J Ophthalmol 2025;69. https://doi.org/10.1007/S10384-024-01137-4.

52 Sartor L, Hunter DS, Vo ML, Samarawickrama C. Benefits and risks of orthokeratology treatment: a systematic review and meta-analysis. Int Ophthalmol 2024;44. https://doi.org/10.1007/S10792-024-03175-W.

53 Huang Z, Chen XF, He T, Tang Y, Du CX. Synergistic effects of defocus-incorporated multiple segments and atropine in slowing the progression of myopia. Sci Rep 2022;12. https://doi.org/10.1038/S41598-022-25599-Z.

54 Jones JH, Mutti DO, Jones-Jordan LA, Walline JJ. Effect of Combining 0.01% Atropine with Soft Multifocal Contact Lenses on Myopia Progression in Children. Optom Vis Sci 2022;99:434. https://doi.org/10.1097/OPX.0000000000001884.

Published

2025-04-22

How to Cite

Qasim, M., Sana Balouch, M., Shahbaz, M., Martins Jorge, J. M., & Botelho Fernandes, P. (2025). The Efficacy of Combination Therapy Using Atropine and Orthokeratology in Limiting Myopia Progression in Comparison to Atropine and Orthokeratology Monotherapy—A Systematic Review . Canadian Journal of Optometry, 87(1), 50–69. https://doi.org/10.15353/cjo.v87i1.6103