Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset
DOI:
https://doi.org/10.15353/rea.v13i2.1948Keywords:
students’ performance, pre-primary education, Gini regression coefficient, BMA methodology, PISAAbstract
Existing theoretical and empirical evidence on the determinants of students’ performance reveals a direct link between pre-primary education and achievement test scores in primary school. Relying on the first-of-its-kind 2015 wave data from the Programme of International Student Assessment (PISA), the present study analyses the associations between students’ performance in science and a broad set of variables, including regressors that proxy pre-primary education. Employing a Gini Regression Bayesian Model Averaging (BMA) approach to account for model uncertainty, it is found that non-attendance in pre-primary education is a robust determinant with a negative impact on students’ performance in science. This result is confirmed both under Gini-BMA and OLS-BMA methodology.
Downloads
Published
Issue
Section
License
The Review of Economic Analysis is committed to the open exchange of ideas and information.
Unlike traditional print journals which require the author to relinquish copyright to the publisher, The Review of Economic Analysis requires that authors release their work under Creative Commons Attribution Non-Commercial license. This license allows anyone to copy, distribute and transmit the work provided the use is non-commercial and appropriate attribution is given.
A 'human-readable' summary of the licence is here and the full legal text is here.