Multi-frame structured light in projector-camera systems affords high-density and non-contact methods of 3D surface reconstruction. However, they have strict setup constraints which can become expensive and time-consuming. Here, we investigate the conditions under which a projective homography can be used to compensate for small perturbations in pose caused by a hand-held camera. We synthesize data using a pinhole camera model and use it to determine the average 2D reprojection error per point correspondence. This error map is grouped into regions with specified upper-bounds to classify which regions produce sufficiently minimal error to be considered feasible for a structured-light projector-camera system with a hand-held camera. Empirical results demonstrate that a sub-pixel reprojection accuracy is achievable with a feasible geometric constraints
PDF