A Comparison Between Two Ocular Dominance Tests:
Letter Dominance and Binocular Rivalry
DOI:
https://doi.org/10.15353/cjo.v87i4.6125Keywords:
eye dominance, binocular vision, psychophysical tests, binocular rivalry test, letter dominance testAbstract
Purpose: Ocular dominance can be measured by a variety of tests, which may not yield the same results. This study compared the repeatability and agreement for two ocular dominance tests, a newer letter dominance test and a well-established binocular rivalry test.
Methods: Thirty-nine adults (28 females and 11 males) with normal vision completed three sessions involving letter dominance and the binocular rivalry tests. An additional seven participants completed only one session. Within-test repeatability was assessed through intraclass correlation and standard deviation. Between-tests agreement was assessed through a Bland-Altman test, intraclass correlation, and ocular dominance directions.
Results: Within-test analysis indicated that the letter dominance test had better repeatability than the grating rivalry test (intraclass correlation coefficient: letter dominance 0.829, rivalry 0.790; standard deviation: letter dominance 0.015 [median], rivalry 0.023 [median], P = .015). Between-test analysis indicated that the two tests had moderate to good agreement (intraclass correlation coefficient 0.712) and identified the same eye as dominant for most participants, although not all (39 consistent across tests, seven inconsistent when a strict measure of equidominance was adopted).
Conclusion: These analyses indicate that the letter dominance test is a more repeatable measure of ocular dominance than the grating rivalry test, and that ocular dominance magnitude metrics do vary across tests.
References
1. Wang M, McGraw P, Ledgeway T. Individual variation in inter-ocular suppression and sensory eye dominance. Vision Res. 2019;163:33-41. doi:10.1016/j.visres.2019.07.004
2. Squier K. Ocular Sensory Dominance and Viewing Distance. Thesis. Nova Southeastern University; 2017. https://nsuworks.nova.edu/hpd_opt_stuetd/12/
3. Porac C, Coren S. Suppressive processes in binocular vision: ocular dominance and amblyopia. Optom Vis Sci. 1975;52(10):651-657. doi:10.1097/00006324-197510000-00001
4. Coren S, Duckman RH. Ocular dominance and amblyopia. Optom Vis Sci. 1975;52(1):47-50.
https://journals.lww.com/optvissci/abstract/1975/01000/ocular_dominance_and_amblyopia_.5.aspx
5. Li J, Lam CSY, Yu M, et al. Quantifying sensory eye dominance in the normal visual System: A new technique and insights into variation across traditional tests. Invest Ophthalmol Vis Sci. 2010;51(12):6875-6881. doi:10.1167/iovs.10-5549
6. Yang E, Blake R, McDonald JE 2nd. A new interocular suppression technique for measuring sensory eye dominance. Invest Ophthalmol Vis Sci. 2010;51(1):588-593. doi:10.1167/iovs.08-3076
7. Song T, Duan X. Ocular dominance in cataract surgery: Research status and progress. Graefes Arch Clin Exp Ophthalmol. 2024;262(1):33-41. doi:10.1007/s00417-023-06216-9
8. Jehangir N, Mahmood SMJ, Mannis T, Moshirfar M. Ocular dominance, coexistent retinal disease, and refractive errors in patients with cataract surgery. Curr Opin Ophthalmol. 2016;27(1):38-44. doi:10.1097/ICU.0000000000000215
9. McNeely RN, Moutari S, Stewart S, Moore JE. Visual outcomes and patient satisfaction 1 and 12 months after combined implantation of extended depth of focus and trifocal intraocular lenses. Int Ophthalmol. 2021;41(12):3985-3998. doi:10.1007/s10792-021-01970-3
10. Solomon KD, Sandoval HP, Potvin R. Visual outcomes, satisfaction, and spectacle independence with a nondiffractive extended vision intraocular lens targeted for slight monovision. J Cataract Refract Surg. 2023;49(7):686-690. doi:10.1097/j.jcrs.0000000000001191
11. Evans BJW. Monovision: A review. Ophthalmic Physiol Opt. 2007;27(5):417-439. doi:10.1111/j.1475-1313.2007.00488.x
12. Barbeito R. Sighting dominance: An explanation based on the processing of visual direction in tests of sighting dominance. Vision Res. 1981;21(6):855-860. doi:10.1016/0042-6989(81)90185-1
13. Miles WR. Ocular dominance demonstrated by unconscious sighting. J Exp Psychol. 1929;12(2):113-126. doi:10.1037/h0075694
14. Mendola JD, Conner IP. Eye dominance predicts fMRI signals in human retinotopic cortex. Neurosci Lett. 2007;414(1):30-34. doi:10.1016/j.neulet.2006.12.012
15. Wade NJ. Early studies of eye dominances. Laterality. 1998;3(2):97-108. doi:10.1080/713754296
16. Laby DM, Kirschen DG. Thoughts on ocular dominance-is it actually a preference? Eye Contact Lens. 2011;37(3):140-144.
doi:10.1097/ICL.0b013e31820e0bdf
17. Mapp AP, Ono H, Barbeito R. What does the dominant eye dominate? A brief and somewhat contentious review. Percept Psychophys. 2003;65(2):310-317. doi:10.3758/BF03194802
18. Rodriguez-Lopez V, Barcala X, Zaytouny A, Dorronsoro C, Peli E, Marcos S. Monovision correction preference and eye dominance measurements. Transl Vis Sci Technol. 2023;12(3):18. doi:10.1167/tvst.12.3.18
19. Li J, Thompson B, Lam CSY, et al. The role of suppression in amblyopia. Invest Ophthalmol Vis Sci. 2011;52(7):4169-4176. doi:10.1167/iovs.11-7233
20. Mansouri B, Thompson B, Hess RF. Measurement of suprathreshold binocular interactions in amblyopia. Vision Res. 2008;48(28):2775-2784. doi:10.1016/j.visres.2008.09.002
21. Ding J, Sperling G. A gain-control theory of binocular combination. Proc Natl Acad Sci. 2006;103(4):1141-1146. doi:10.1073/pnas.0509629103
22. Huang CB, Zhou J, Lu ZL, Feng L, Zhou Y. Binocular combination in anisometropic amblyopia. J Vis. 2009;9(3):1-16. doi:10.1167/9.3.17
23. Zhou J, Clavagnier S, Hess RF. Short-term monocular deprivation strengthens the patched eye’s contribution to binocular combination. J Vis. 2013;13(5):1-10. doi:10.1167/13.5.12
24. Wang Y, He Z, Liang Y, et al. The binocular balance at high spatial frequencies as revealed by the binocular orientation combination task. Front Hum Neurosci. 2019;13(106):1-10. doi:10.3389/fnhum.2019.00106
25. Spiegel DP, Baldwin AS, Hess RF. Ocular dominance plasticity: Inhibitory interactions and contrast equivalence. Sci Rep. 2017;7:39913. doi:10.1038/srep39913
26. Lunghi C, Burr DC, Morrone C. Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Curr Biol. 2011;21(14):R538-R539. doi:10.1016/j.cub.2011.06.004
27. Tong F, Meng M, Blake R. Neural bases of binocular rivalry. Trends Cogn Sci. 2006;10(11):502-511. doi:10.1016/j.tics.2006.09.003
28. Lunghi C, Burr DC, Morrone MC. Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. J Vis. 2013;13(6):1-15. doi:10.1167/13.6.1
29. Lunghi C, Sframeli AT, Lepri A, et al. A new counterintuitive training for adult amblyopia. Ann Clin Transl Neurol. 2019;6(2):274-284.
doi:10.1002/acn3.698
30. Lunghi C, Sale A. A cycling lane for brain rewiring. Curr Biol. 2015;25(23):R1122-R1123. doi:10.1016/j.cub.2015.10.026
31. Finn AE, Baldwin AS, Reynaud A, Hess RF. Visual plasticity and exercise revisited: No evidence for a “cycling lane.” J Vis. 2019;19(6):21, 1-10. doi:10.1167/19.6.21
32. Lunghi C, Berchicci M, Morrone MC, Di Russo F. Short-term monocular deprivation alters early components of visual evoked potentials. J Physiol. 2015;593(19):4361-4372. doi:10.1113/JP270950
33. Ooi TL, He ZJ. Sensory eye dominance: Relationship between eye and brain. Eye Brain. 2020;12:25-31. doi:10.2147/EB.S176931
34. García-Pérez MA, Peli E. Psychophysical tests do not identify ocular dominance consistently. Iperception. 2019;10(2):2041669519841397. doi:10.1177/2041669519841397
35. Pointer JS. Sighting dominance, handedness, and visual acuity preference: Three mutually exclusive modalities? Ophthalmic Physiol Opt. 2001;21(2):117-126. doi:10.1046/j.1475-1313.2001.00549.x
36. Min SH, Gong L, Baldwin AS, et al. Some psychophysical tasks measure ocular dominance plasticity more reliably than others. J Vis. 2021;21(8):20, 1-23. doi:10.1167/jov.21.8.20
37. Bossi M, Hamm LM, Dahlmann-Noor A, Dakin SC. A comparison of tests for quantifying sensory eye dominance. Vision Res. 2018;153:60-69. doi:10.1016/j.visres.2018.09.006
38. Chen X, Hall K, Bobier WR, Thompson B, Chakraborty A. Transcranial random noise stimulation and exercise do not modulate ocular dominance plasticity in adults with normal vision. J Vis. 2022;22(10):14, 1-13. doi:10.1167/jov.22.10.14
39. Chen X, Bobier W, Thompson B. Short-term ocular dominance plasticity is not modulated by visual cortex tDCS but increases with length of monocular deprivation. Sci Rep. 2023;13(1):6666. doi:10.1038/s41598-023-33823-7
40. Lunghi C, Morrone MC, Secci J, Caputo R. Binocular rivalry measured 2 hours after occlusion therapy predicts the recovery rate of the amblyopic eye in anisometropic children. Invest Ophthalmol Vis Sci. 2016;57(4):1537-1546. doi:10.1167/iovs.15-18419
41. Lunghi C, Daniele G, Binda P, et al. Altered visual plasticity in morbidly obese subjects. iScience. 2019;22:206-213. doi:10.1016/j.isci.2019.11.027
42. Lunghi C, Galli-Resta L, Binda P, et al. Visual cortical plasticity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2019;60(7):2753-2763. doi:10.1167/iovs.18-25750
43. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012
44. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psycholo Methods. 1996;1(1):30-46. doi:10.1037/1082-989X.1.1.30
45. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47(8):931-936. doi:10.1016/j.ijnurstu.2009.10.001
46. Gerke O. Reporting standards for a Bland–Altman agreement analysis: A review of methodological reviews. Diagnostics. 2020;10(5):334. doi:10.3390/diagnostics10050334
47. Ludbrook J. Confidence in Altman-Bland plots: A critical review of the method of differences. Clin Exp Pharmacol Physiol. 2010;37(2):143-149. doi:10.1111/j.1440-1681.2009.05288.x
48. Zheleznyak L, Alarcon A, Dieter KC, Tadin D, Yoon G. The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections. J Vis. 2015;15(6):17, 1-12. doi:10.1167/15.6.17
49. Ito M, Shimizu K, Kawamorita T, Ishikawa H, Sunaga K, Komatsu M. Association between ocular dominance and refractive asymmetry. J Refract Surg. 2013;29(10):716-720. doi:10.3928/1081597X-20130813-02
50. Linke SJ, Baviera J, Richard G, Katz T. Association between ocular dominance and spherical/astigmatic anisometropia, age, and sex: Analysis of 1274 hyperopic individuals. Invest Ophthalmol Vis Sci. 2012;53(9):5362-5369. doi:10.1167/iovs.11-8781
51. Wang Y, Cui L, He Z, et al. On the relationship between sensory eye dominance and stereopsis in the normal-sighted adult population: Normative data. Front Hum Neurosci. 2018;12:357. doi:10.3389/fnhum.2018.00357
52. Kang MS. Size matters: A study of binocular rivalry dynamics. J Vis. 2009;9(1):1-11. doi:10.1167/9.1.17
53. Blake R. A neural theory of binocular rivalry. Psychol Rev. 1989;96(1):145-167. doi:10.1037/0033-295X.96.1.145
54. Blake R, O’Shea RP, Mueller TJ. Spatial zones of binocular rivalry in central and peripheral vision. Vis Neurosci. 1992;8(5):469-478.
doi:10.1017/S0952523800004971
55. O’Shea RP, Sims AJH, Govan DG. The effect of spatial frequency and field size on the spread of exclusive visibility in binocular rivalry. Vision Res. 1997;37(2):175-183. doi:10.1016/S0042-6989(96)00113-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Xiaoxin Chen, Arijit Chakraborty, William Bobier, Benjamin Thompson

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.