Une comparaison de deux tests de dominance oculaire :
la dominance des lettres et la rivalité binoculaire
DOI :
https://doi.org/10.15353/cjo.v87i4.6125Mots-clés :
dominance oculaire, vision binoculaire, tests psychophysiques, est de rivalité binoculaire, test de dominance des lettresRésumé
Objectif : La dominance oculaire peut être évaluée par une variété de tests, qui peuvent ne pas donner les mêmes résultats. La présente étude a comparé la répétabilité et la concordance des résultats de deux tests de dominance oculaire, un nouveau test de dominance des lettres et un test de rivalité binoculaire bien établi.
Méthodologie : Trente-neuf adultes (28 femmes et 11 hommes) ayant une vision normale ont participé à trois séances de tests de rivalité binoculaire et de dominance des lettres. Sept autres adultes n’ont participé qu’à une seule séance. La répétabilité des tests a été évaluée au moyen du coefficient de corrélation intraclasse et de l’écart-type, tandis que la concordance entre les tests a été évalué au moyen de l’analyse de Bland-Altman, du coefficient de corrélation intraclasse et des directions de dominance oculaire.
Résultats : L’analyse des résultats intratest a indiqué que le test de dominance des lettres avait une meilleure répétabilité que le test de rivalité binoculaire (coefficient de corrélation intraclasse : dominance des lettres = 0,829 et rivalité = 0,790; écart-type : dominance des lettres = 0,015 [médiane] et rivalité = 0,023 [médiane], P = 0,015). L’analyse des résultats entre les tests a indiqué que les deux tests avaient une concordance moyenne à bonne (CCI de 0,712) et qu’ils identifient le même œil comme dominant pour la plupart des participants, mais pas pour tous (39 cohérents entre les tests et 7 incohérents avec une mesure stricte de l’équidominance).
Conclusion : Ces analyses révèlent que le test de dominance des lettres est une mesure plus reproductible de la domination oculaire que le test de rivalité binoculaire, et que les mesures de la force de la dominance oculaire varient d’un test à l’autre.
Références
1. Wang M, McGraw P, Ledgeway T. Individual variation in inter-ocular suppression and sensory eye dominance. Vision Res. 2019;163:33-41. doi:10.1016/j.visres.2019.07.004
2. Squier K. Ocular Sensory Dominance and Viewing Distance. Thesis. Nova Southeastern University; 2017. https://nsuworks.nova.edu/hpd_opt_stuetd/12/
3. Porac C, Coren S. Suppressive processes in binocular vision: ocular dominance and amblyopia. Optom Vis Sci. 1975;52(10):651-657. doi:10.1097/00006324-197510000-00001
4. Coren S, Duckman RH. Ocular dominance and amblyopia. Optom Vis Sci. 1975;52(1):47-50.
https://journals.lww.com/optvissci/abstract/1975/01000/ocular_dominance_and_amblyopia_.5.aspx
5. Li J, Lam CSY, Yu M, et al. Quantifying sensory eye dominance in the normal visual System: A new technique and insights into variation across traditional tests. Invest Ophthalmol Vis Sci. 2010;51(12):6875-6881. doi:10.1167/iovs.10-5549
6. Yang E, Blake R, McDonald JE 2nd. A new interocular suppression technique for measuring sensory eye dominance. Invest Ophthalmol Vis Sci. 2010;51(1):588-593. doi:10.1167/iovs.08-3076
7. Song T, Duan X. Ocular dominance in cataract surgery: Research status and progress. Graefes Arch Clin Exp Ophthalmol. 2024;262(1):33-41. doi:10.1007/s00417-023-06216-9
8. Jehangir N, Mahmood SMJ, Mannis T, Moshirfar M. Ocular dominance, coexistent retinal disease, and refractive errors in patients with cataract surgery. Curr Opin Ophthalmol. 2016;27(1):38-44. doi:10.1097/ICU.0000000000000215
9. McNeely RN, Moutari S, Stewart S, Moore JE. Visual outcomes and patient satisfaction 1 and 12 months after combined implantation of extended depth of focus and trifocal intraocular lenses. Int Ophthalmol. 2021;41(12):3985-3998. doi:10.1007/s10792-021-01970-3
10. Solomon KD, Sandoval HP, Potvin R. Visual outcomes, satisfaction, and spectacle independence with a nondiffractive extended vision intraocular lens targeted for slight monovision. J Cataract Refract Surg. 2023;49(7):686-690. doi:10.1097/j.jcrs.0000000000001191
11. Evans BJW. Monovision: A review. Ophthalmic Physiol Opt. 2007;27(5):417-439. doi:10.1111/j.1475-1313.2007.00488.x
12. Barbeito R. Sighting dominance: An explanation based on the processing of visual direction in tests of sighting dominance. Vision Res. 1981;21(6):855-860. doi:10.1016/0042-6989(81)90185-1
13. Miles WR. Ocular dominance demonstrated by unconscious sighting. J Exp Psychol. 1929;12(2):113-126. doi:10.1037/h0075694
14. Mendola JD, Conner IP. Eye dominance predicts fMRI signals in human retinotopic cortex. Neurosci Lett. 2007;414(1):30-34. doi:10.1016/j.neulet.2006.12.012
15. Wade NJ. Early studies of eye dominances. Laterality. 1998;3(2):97-108. doi:10.1080/713754296
16. Laby DM, Kirschen DG. Thoughts on ocular dominance-is it actually a preference? Eye Contact Lens. 2011;37(3):140-144.
doi:10.1097/ICL.0b013e31820e0bdf
17. Mapp AP, Ono H, Barbeito R. What does the dominant eye dominate? A brief and somewhat contentious review. Percept Psychophys. 2003;65(2):310-317. doi:10.3758/BF03194802
18. Rodriguez-Lopez V, Barcala X, Zaytouny A, Dorronsoro C, Peli E, Marcos S. Monovision correction preference and eye dominance measurements. Transl Vis Sci Technol. 2023;12(3):18. doi:10.1167/tvst.12.3.18
19. Li J, Thompson B, Lam CSY, et al. The role of suppression in amblyopia. Invest Ophthalmol Vis Sci. 2011;52(7):4169-4176. doi:10.1167/iovs.11-7233
20. Mansouri B, Thompson B, Hess RF. Measurement of suprathreshold binocular interactions in amblyopia. Vision Res. 2008;48(28):2775-2784. doi:10.1016/j.visres.2008.09.002
21. Ding J, Sperling G. A gain-control theory of binocular combination. Proc Natl Acad Sci. 2006;103(4):1141-1146. doi:10.1073/pnas.0509629103
22. Huang CB, Zhou J, Lu ZL, Feng L, Zhou Y. Binocular combination in anisometropic amblyopia. J Vis. 2009;9(3):1-16. doi:10.1167/9.3.17
23. Zhou J, Clavagnier S, Hess RF. Short-term monocular deprivation strengthens the patched eye’s contribution to binocular combination. J Vis. 2013;13(5):1-10. doi:10.1167/13.5.12
24. Wang Y, He Z, Liang Y, et al. The binocular balance at high spatial frequencies as revealed by the binocular orientation combination task. Front Hum Neurosci. 2019;13(106):1-10. doi:10.3389/fnhum.2019.00106
25. Spiegel DP, Baldwin AS, Hess RF. Ocular dominance plasticity: Inhibitory interactions and contrast equivalence. Sci Rep. 2017;7:39913. doi:10.1038/srep39913
26. Lunghi C, Burr DC, Morrone C. Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Curr Biol. 2011;21(14):R538-R539. doi:10.1016/j.cub.2011.06.004
27. Tong F, Meng M, Blake R. Neural bases of binocular rivalry. Trends Cogn Sci. 2006;10(11):502-511. doi:10.1016/j.tics.2006.09.003
28. Lunghi C, Burr DC, Morrone MC. Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. J Vis. 2013;13(6):1-15. doi:10.1167/13.6.1
29. Lunghi C, Sframeli AT, Lepri A, et al. A new counterintuitive training for adult amblyopia. Ann Clin Transl Neurol. 2019;6(2):274-284.
doi:10.1002/acn3.698
30. Lunghi C, Sale A. A cycling lane for brain rewiring. Curr Biol. 2015;25(23):R1122-R1123. doi:10.1016/j.cub.2015.10.026
31. Finn AE, Baldwin AS, Reynaud A, Hess RF. Visual plasticity and exercise revisited: No evidence for a “cycling lane.” J Vis. 2019;19(6):21, 1-10. doi:10.1167/19.6.21
32. Lunghi C, Berchicci M, Morrone MC, Di Russo F. Short-term monocular deprivation alters early components of visual evoked potentials. J Physiol. 2015;593(19):4361-4372. doi:10.1113/JP270950
33. Ooi TL, He ZJ. Sensory eye dominance: Relationship between eye and brain. Eye Brain. 2020;12:25-31. doi:10.2147/EB.S176931
34. García-Pérez MA, Peli E. Psychophysical tests do not identify ocular dominance consistently. Iperception. 2019;10(2):2041669519841397. doi:10.1177/2041669519841397
35. Pointer JS. Sighting dominance, handedness, and visual acuity preference: Three mutually exclusive modalities? Ophthalmic Physiol Opt. 2001;21(2):117-126. doi:10.1046/j.1475-1313.2001.00549.x
36. Min SH, Gong L, Baldwin AS, et al. Some psychophysical tasks measure ocular dominance plasticity more reliably than others. J Vis. 2021;21(8):20, 1-23. doi:10.1167/jov.21.8.20
37. Bossi M, Hamm LM, Dahlmann-Noor A, Dakin SC. A comparison of tests for quantifying sensory eye dominance. Vision Res. 2018;153:60-69. doi:10.1016/j.visres.2018.09.006
38. Chen X, Hall K, Bobier WR, Thompson B, Chakraborty A. Transcranial random noise stimulation and exercise do not modulate ocular dominance plasticity in adults with normal vision. J Vis. 2022;22(10):14, 1-13. doi:10.1167/jov.22.10.14
39. Chen X, Bobier W, Thompson B. Short-term ocular dominance plasticity is not modulated by visual cortex tDCS but increases with length of monocular deprivation. Sci Rep. 2023;13(1):6666. doi:10.1038/s41598-023-33823-7
40. Lunghi C, Morrone MC, Secci J, Caputo R. Binocular rivalry measured 2 hours after occlusion therapy predicts the recovery rate of the amblyopic eye in anisometropic children. Invest Ophthalmol Vis Sci. 2016;57(4):1537-1546. doi:10.1167/iovs.15-18419
41. Lunghi C, Daniele G, Binda P, et al. Altered visual plasticity in morbidly obese subjects. iScience. 2019;22:206-213. doi:10.1016/j.isci.2019.11.027
42. Lunghi C, Galli-Resta L, Binda P, et al. Visual cortical plasticity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2019;60(7):2753-2763. doi:10.1167/iovs.18-25750
43. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012
44. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psycholo Methods. 1996;1(1):30-46. doi:10.1037/1082-989X.1.1.30
45. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47(8):931-936. doi:10.1016/j.ijnurstu.2009.10.001
46. Gerke O. Reporting standards for a Bland–Altman agreement analysis: A review of methodological reviews. Diagnostics. 2020;10(5):334. doi:10.3390/diagnostics10050334
47. Ludbrook J. Confidence in Altman-Bland plots: A critical review of the method of differences. Clin Exp Pharmacol Physiol. 2010;37(2):143-149. doi:10.1111/j.1440-1681.2009.05288.x
48. Zheleznyak L, Alarcon A, Dieter KC, Tadin D, Yoon G. The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections. J Vis. 2015;15(6):17, 1-12. doi:10.1167/15.6.17
49. Ito M, Shimizu K, Kawamorita T, Ishikawa H, Sunaga K, Komatsu M. Association between ocular dominance and refractive asymmetry. J Refract Surg. 2013;29(10):716-720. doi:10.3928/1081597X-20130813-02
50. Linke SJ, Baviera J, Richard G, Katz T. Association between ocular dominance and spherical/astigmatic anisometropia, age, and sex: Analysis of 1274 hyperopic individuals. Invest Ophthalmol Vis Sci. 2012;53(9):5362-5369. doi:10.1167/iovs.11-8781
51. Wang Y, Cui L, He Z, et al. On the relationship between sensory eye dominance and stereopsis in the normal-sighted adult population: Normative data. Front Hum Neurosci. 2018;12:357. doi:10.3389/fnhum.2018.00357
52. Kang MS. Size matters: A study of binocular rivalry dynamics. J Vis. 2009;9(1):1-11. doi:10.1167/9.1.17
53. Blake R. A neural theory of binocular rivalry. Psychol Rev. 1989;96(1):145-167. doi:10.1037/0033-295X.96.1.145
54. Blake R, O’Shea RP, Mueller TJ. Spatial zones of binocular rivalry in central and peripheral vision. Vis Neurosci. 1992;8(5):469-478.
doi:10.1017/S0952523800004971
55. O’Shea RP, Sims AJH, Govan DG. The effect of spatial frequency and field size on the spread of exclusive visibility in binocular rivalry. Vision Res. 1997;37(2):175-183. doi:10.1016/S0042-6989(96)00113-7
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
© Xiaoxin Chen, Arijit Chakraborty, William Bobier, Benjamin Thompson 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.