An Evaluation of Binocular and Accommodative Function as Predictors of Myopia Progression

Authors

  • Stanley Hatch Salus at Drexel University

DOI:

https://doi.org/10.15353/cjo.v87i3.6384

Keywords:

myopia, binocular vision, accommodation

Abstract

Abstract
Introduction
This study was designed to evaluate whether common tests of binocular and accommodative function can predict myopia progression in children. The study explored lesser-studied clinical measures beyond accommodative lag and phoria.
Methods
This retrospective cohort study reviewed patients from age 5 years 0 months up to but not including the 17th birthday in an urban academic U.S. clinic. We measured binocular and accommodative functions in a sample of 410 patients with normal corrected visual acuity. The functions were correlated to change in cycloplegic refraction over time.
Results
The mean observation period was 2.59 ± 0.70 years. Pearson’s correlation coefficients between binocular/accommodative measures and refractive change were weak (r = -0.02 to 0.03). Excluding patients with constant strabismus and stratifying by phoria type (exodeviation or esodeviation), along with fusional vergence metrics, failed to make any meaningful improvements (r = -0.10 to 0.07). Even among patients at high-risk for myopia and myopia progression (baseline refraction ≤ 0.75D), correlations remained weak (r = -0.12 to 0.06).
Conclusion
In this clinic sample, common tests of binocular vision and accommodation were independent of change in refractive error and did not discriminate future myopia conversion or progression.

References

1. Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends From 2000 Through 2050. Ophthalmol. 2016;123(5):1036–42. doi:10.1016/j.ophtha.2016.01.006

2. Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global Variations and Time Trends in the Prevalence of Childhood Myopia, a Systematic Review and Quantitative Meta-Analysis: Implications for Aetiology and Early Prevention. Br J Ophthalmol. 2016;100(7):882–90. doi:10.1136/bjophthalmol-2015-307724

3. Han X, Liu C, Chen Y, He M. Myopia Prediction: A Systematic Review. Eye. (Lond) 2022;36(5):921–29. doi:10.1038/s41433-021-01805-6

4. Zadnik K, Sinnott LT, Cotter SA, et al. Prediction of Juvenile–Onset Myopia. JAMA Ophthalmol. 2015;133(6):683–89. doi:10.1001/jamaophthalmol.2015.0471

5. Kleinstein RN, Sinnott LT, Jones-Jordan LA, Sims J, Zadnik K. New Cases of Myopia in Children. Arch Ophthalmol. 2012;130(10):1274–79. doi:10.1001/archophthalmol.2012.1449

6. Jones-Jordan LA, Sinnott LT, Chu RH, et al. Myopia Progression as a Function of Sex, Age, and Ethnicity. Invest Ophthalmol Vis Sci. 2021;62(10):36. doi:10.1167/iovs.62.10.36

7. Jong M, Naduvilath T, Saw J, Kim K, Flitcroft DI. Association Between Global Myopia Prevalence and International Levels of Education. Optom Vis Sci. 2023;100(10):702–07. doi:10.1097/OPX.0000000000002067

8. Gopalakrishnan A, Hussaindeen JR, Sivaraman V, et al. Myopia and Its Association With Near Work, Outdoor Time, and Housing Type Among Schoolchildren in South India. Optom Vis Sci. 2023;100(1):105–10. doi:10.1097/OPX.0000000000001975

9. Deng L, Pang Y. Effect of Outdoor Activities in Myopia Control: Meta-Analysis of Clinical Studies. Optom Vis Sci. 2019;96(4):276–82. doi:10.1097/OPX.0000000000001357

10. Tideman JWL, Polling JR, Jaddoe VWV, Vingerling JR, Klaver CCW. Environmental Risk Factors Can Reduce Axial Length Elongation and Myopia Incidence in 6- to 9-Year-Old Children. Ophthalmology. 2019;126(1):127–36. doi:10.1016/j.ophtha.2018.06.029

11. Enthoven CA, Tideman JWL, Polling JR, Yang-Huang J, Raat H, Klaver CCW. The Impact of Computer Use on Myopia Development in Childhood: The Generation R Study [published corrigendum appears in Prev Med 2025 Apr;193:108243. doi: 10.1016/j.ypmed.2025.108243]. Prev Med. 2020 Mar;132:105988. doi:10.1016/j.ypmed.2020.105988

12. Tang SM, Kam KW, French AN, et al. Independent Influence of Parental Myopia on Childhood Myopia in a Dose-Related Manner in 2,055 Trios: The Hong Kong Children Eye Study [erratum appears in Am J Ophthalmol. 2022 Aug;240:353. doi: 10.1016/j.ajo.2022.03.001]. Am J Ophthalmol 2020 Oct;218:199–207. doi:10.1016/j.ajo.2020.05.026

13. French AN, Morgan IG, Mitchell P, Rose KA. Risk Factors for Incident Myopia in Australian Schoolchildren: The Sydney Adolescent Vascular and Eye Study. Ophthalmology. 2013;120(10):2100–08. doi:10.1016/j.ophtha.2013.02.035

14. Aslan F, Sahinoglu-Keskek N. The Effect of Home Education on Myopia Progression in Children During the COVID-19 Pandemic. Eye. 2022;36(7):1427–32. doi:10.1038/s41433-021-01655-2

15. Tricard D, Marillet S, Ingrand P, Bullimore MA, Bourne RRA, Leveziel N. Progression of Myopia in Children and Teenagers: A Nationwide Longitudinal Study. Br J Ophthalmol. 2022;106(8):1104–09. doi:10.1136/bjophthalmol-2020-318256

16. Gwiazda J, Thorn F, Bauer J, Held R. Myopic Children Show Insufficient Accommodative Response to Blur. Invest Ophthalmol Vis Sci. 1993;34(3):690–94.

17. Gwiazda J, Bauer J, Thorn F, Held R. A Dynamic Relationship Between Myopia and Blur-Driven Accommodation in School-Aged Children. Vision Res. 1995;35(9):1299–1304. doi:10.1016/0042-6989(94)00238-h

18. Allen PM, O’Leary DJ. Accommodation Functions: Co-Dependency and Relationship to Refractive Error. Vision Res. 2006;46(4):491–505. doi:10.1016/j.visres.2005.05.007

19. Goss DA. Clinical Accommodation and Heterophoria Findings Preceding Juvenile Onset of Myopia. Optom Vis Sci. 1991;68(2):110–16. doi:10.1097/00006324-199102000-00005

20. Price H, Allen PM, Radhakrishnan H, et al. The Cambridge Anti-Myopia Study: Variables Associated With Myopia Progression. Optom Vis Sci. 2013;90(11):1274–83. doi:10.1097/OPX.0000000000000067

21. Koomson NY, Amedo AO, Opoku-Baah C, Ampeh PB, Ankamah E, Bonsu K. Relationship Between Reduced Accommodative Lag and Myopia Progression. Optom Vis Sci. 2016;93(7):683–91. doi:10.1097/OPX.0000000000000867

22. Goss DA, Jackson TW. Clinical Findings Before the Onset of Myopia in Youth: 3. Heterophoria. Optom Vis Sci. 1996;73(4):269–78. doi:10.1097/00006324-199604000-0000

23. Goss DA, Rainey BB. Relationship of Accommodative Response and Nearpoint Phoria in a Sample of Myopic Children. Optom Vis Sci. 1999;76(5):292–94. doi:10.1097/00006324-199905000-00016

24. Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to Slow Progression of Myopia in Children. Cochrane Database Syst Rev. 2020 Jan 13;1(1):CD004916. doi:10.1002/14651858.CD004916.pub4

25. Gwiazda JE, Hyman L, Norton TT, et al. Accommodation and Related Risk Factors Associated With Myopia Progression and Their Interaction With Treatment in COMET Children. Invest Ophthalmol Vis Sci. 2004;45(7):2143–51. doi:10.1167/iovs.03-1306

26. Modjtahedi BS, Abbott RL, Fong DS, Lum F, Tan D; Task Force on Myopia. Reducing the Global Burden of Myopia by Delaying the Onset of Myopia and Reducing Myopic Progression in Children: The Academy’s Task Force on Myopia. Ophthalmology. 2021;128(6):816–26. doi:10.1016/j.ophtha.2020.10.040

27. Hatch SW. Trends in Childhood Myopia in an Urban U.S. Clinic Population During the COVID-19 Pandemic. Vision Dev & Rehab. 2024;10(3):155–61. doi.org/10.31707/VDR2024.10.3.p155

28. Scheiman M, Wick B. Clinical Management of Binocular Vision, 4th Ed. Philadelphia: Lippencott, Williams & Wilkins, 2013.

29. Yazdani N, Sadeghi R, Momeni-Moghaddam H, Zarifmahmoudi L, Ehsaei A. Comparison of Cyclopentolate Versus Tropicamide Cycloplegia: A Systematic Review and Meta-Analysis. J Optom. 2018;11(3):135–43. doi: 10.1016/j.optom.2017.09.001

30. Bist J, Paudel N, Kandel S, Marasini S. Comparative Efficacy of Tropicamide 1% and Cyclopentolate 1% for Cycloplegic Refraction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Optom Vis Sci. 2025;102(3):175–180. doi:10.1097/OPX.0000000000002226

Published

2025-09-03

How to Cite

Hatch, S. (2025). An Evaluation of Binocular and Accommodative Function as Predictors of Myopia Progression. Canadian Journal of Optometry, 87(3), 27–42. https://doi.org/10.15353/cjo.v87i3.6384

Issue

Section

Original Research